首页> 外文学位 >Oscillating hydrogel based bioreactors for chondrogenic differentiation of mesenchymal stem cells.
【24h】

Oscillating hydrogel based bioreactors for chondrogenic differentiation of mesenchymal stem cells.

机译:基于振荡的水凝胶生物反应器,用于间充质干细胞的软骨分化。

获取原文
获取原文并翻译 | 示例

摘要

Harnessing the differentiative potential of stem cells for use in tissue repair could be a powerful therapy for debilitating diseases. However, one of the bottlenecks of stem cell based therapeutics and tissue engineering is inefficient and homogeneous stem cell differentiation. Various physico-chemical cues such as mechanical strain, chemical components, and soluble factors have been shown to direct stem cell differentiation. This study developed a multifunctional polymer-based artificial ECM replicating the multifunctional characteristics of native ECM to understand the physico-chemical cues present in a 3D environment. Specifically, we have developed a synthetic hydrogel that acts as a scaffold and bioreactor providing dynamic mechanical cues and structural support to cells. A heating device was used to induce ∼5% volume strain by applying temperature oscillations to thermoresponsive hydrogels. Human mesenchymal stem cells (hMSCs) were encapsulated in P[MEO2MA-OEGMA-EGDA] (MO) (10 and 20% Mw PEG: 3400) and PEGDA(15% Mw PEG: 10000) hydrogels and cultured with and without TGFa-1. Fluorescent particle tracking was used to measure realtime volume strains of acellular and cellular hydrogels under temperature oscillations and verified with swelling ratios. hMSCs produced cartilaginous ECM as evidenced from histological and biochemical analysis. Realtime PCR was used to characterize the expression of various chondrogenic markers, indicating optimal chondrogenic differentiation with 1 hour stimulated PEGDA (15% PEG) hydrogels and TGFa-1. Due to static mechanical strains induced by high crosslinking density and confined heating chambers, enhanced chondrogenic differentiation was limited for all gels. Overall, this study demonstrated the potential use of polymer-based synthetic bioactuators for stem cell differentiation.
机译:利用干细胞在组织修复中的分化潜能可能是使疾病衰弱的有力疗法。然而,基于干细胞的疗法和组织工程学的瓶颈之一是效率低下且干细胞分化不均一。已经显示出各种物理化学线索,例如机械应变,化学成分和可溶性因子,可指导干细胞的分化。这项研究开发了一种基于聚合物的多功能人造ECM,可复制天然ECM的多功能特性,以了解3D环境中存在的物理化学线索。具体来说,我们已经开发出一种合成的水凝胶,可以充当支架和生物反应器,为细胞提供动态的机械线索和结构支持。通过对热响应性水凝胶施加温度振荡,使用加热装置引起约5%的体积应变。将人间充质干细胞(hMSCs)封装在P [MEO2MA-OEGMA-EGDA](MO)(10和20%Mw PEG:3400)和PEGDA(15%Mw PEG:10000)水凝胶中,并在有或没有TGFa-1的条件下培养。荧光粒子跟踪用于测量温度振荡下无细胞和细胞水凝胶的实时体积应变,并通过溶胀比进行验证。从组织学和生化分析可以证明,hMSCs产生了软骨ECM。使用实时PCR表征各种软骨形成标记的表达,表明使用1小时刺激的PEGDA(15%PEG)水凝胶和TGFa-1可以实现最佳的软骨形成分化。由于高交联密度和密闭的加热腔室引起的静态机械应变,所有凝胶的软骨形成分化均受到限制。总的来说,这项研究证明了基于聚合物的合成生物致动器在干细胞分化中的潜在用途。

著录项

  • 作者

    Neiman, Veronica Juliet.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Biomedical.
  • 学位 M.S.
  • 年度 2010
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号