首页> 外文学位 >Microwave-assisted wet chemical (MAWC) synthesis of lithium iron phosphate.
【24h】

Microwave-assisted wet chemical (MAWC) synthesis of lithium iron phosphate.

机译:微波辅助湿化学法(MAWC)合成磷酸铁锂。

获取原文
获取原文并翻译 | 示例

摘要

LiFePO4 is a Co-free battery material. Its advantages of low cost, non-toxic and flat discharge plateau show promising for vehicle propulsion applications. A major problem associated with this material is its low electrical conductivity. Use of nanosized LiFePO4 coated with carbon is considered a solution because the nanosized particles have much shorter path for L+ ions to travel from the LiFePO4 crystal lattice to electrolytes. As other nano material powders, however, nano LiFePO4 could have processing and health issues.;In order to achieve high electrical conductivity while maintaining a satisfactory manufacturability, the particles should possess both of the nano- and the micro-characteristics correspondingly. These two contradictory requirements could only be fulfilled if the LiFePO4 powders have a hierarchical structure: micron-sized parent particles assembled by nanosized crystallites with appropriate electrolyte communication channels.;This study addressed the issue by study of the formation and development mechanisms of the LiFePO4 crystallites and their microstructures. Microwave-assisted wet chemical (MAWC) synthesis approach was employed in order to facilitate the evolvement of the nanostructures. The results reveal that the LiFePO4 crystallites were directly nucleated from amorphous precursors by competition against other low temperature phases, Li3PO 4 and Fe3(PO4)2·8H2 O. Growth of the crystalline LiFePO4 particles went through oriented attachment first, followed by revised Ostwald ripening and then recrystallization. While recrystallization played the role in growth of well crystallized particles, oriented attachment and revised Ostwald ripening were responsible for formation of the straight edge and plate-like shaped LiFePO4 particles comprised of nanoscale substructure. Oriented attachment and revised Ostwald ripening seemed to be also responsible for clustering the plate-like LiFePO4 particles into a high-level aggregated structure.;The finding from this study indicates a hope for obtaining the hierarchical structure of LiFePO4 particles that could exhibit the both micro- and nano-scale characteristics. Future study is proposed to further advance the understanding of the structural development mechanisms, so that they can be manipulated for new LiFePO4 structures ideal for battery application.
机译:LiFePO4是无钴电池材料。其低成本,无毒和平坦放电平台的优势显示出对车辆推进应用的希望。与这种材料有关的主要问题是其低电导率。认为使用涂覆有碳的纳米LiFePO4可以解决问题,因为纳米颗粒的L +离子从LiFePO4晶格到电解质的路径要短得多。但是,与其他纳米材料粉末一样,纳米LiFePO4可能具有加工和健康问题。为了获得高电导率并同时保持令人满意的可制造性,颗粒应同时具有纳米和微观特性。仅当LiFePO4粉末具有分层结构时,才能满足这两个矛盾的要求:微米级母体颗粒由具有适当电解质连通通道的纳米级微晶组装而成;该研究通过研究LiFePO4微晶的形成和发展机理解决了这个问题。及其微结构。为了促进纳米结构的演变,采用了微波辅助湿化学(MAWC)合成方法。结果表明,通过与其他低温相(Li3PO 4和Fe3(PO4)2·8H2 O)的竞争,LiFePO4晶体直接从非晶态前体中形核。结晶的LiFePO4颗粒的生长首先通过定向附着,然后经过修正的Ostwald成熟然后重结晶。虽然重结晶在充分结晶的颗粒的生长中起着作用,但定向附着和修正的奥斯特瓦尔德熟化是形成由纳米级亚结构组成的直边和板状LiFePO4颗粒的原因。定向附着和修正的奥斯特瓦尔德熟化似乎也负责将板状LiFePO4颗粒聚集为高水平的聚集结构。;这项研究的发现表明,希望获得可以同时显示两种微观结构的LiFePO4颗粒的分层结构。 -和纳米级特性。提出了进一步的研究,以进一步增进对结构发展机制的理解,以便可以将其操纵为适用于电池应用的新型LiFePO4结构。

著录项

  • 作者

    Shi, Shangzhao.;

  • 作者单位

    Michigan Technological University.;

  • 授予单位 Michigan Technological University.;
  • 学科 Chemistry Inorganic.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号