首页> 外文学位 >Development of an Electrochemical Sensor for Detection of 2,4-Dinitrotoluene.
【24h】

Development of an Electrochemical Sensor for Detection of 2,4-Dinitrotoluene.

机译:用于检测2,4-二硝基甲苯的电化学传感器的开发。

获取原文
获取原文并翻译 | 示例

摘要

The main goal of this work is to develop a sensing device that is capable of selectively binding and detecting DNT. Because fluorous sensing matrixes have been previously shown to greatly enhance the stability of host-guest complexes, the ultimate goal of this work is to incorporate DNT-selective receptors into a fluorous matrix for enhanced sensitivity and selective for DNT. Therefore, in Chapter 2, an electrolyte for performing electrochemistry with fluorous matrixes is introduced. As a proof-of-concept, cyclic voltammetry of ferrocene was performed. Quantitative fitting of the resulting CVs shows that the transfer coefficient for ferrocene in the fluorous phase is well within the range previously reported in the literature. Conversely, the ko determined by this fitting is orders of magnitude lower than in solvents typically used for electrochemistry. Using well-established Marcus theory, this discrepancy is explained. Because the electrolyte used for voltammetry is not commercially available at this time, the use of large sample volumes is undesirable. Thus, a sample cell that allows for performing cyclic voltammetry with sample volumes of 200 μL is presented in Chapter 3. This sample cell also has the potential of greatly reducing the size of samples typically used for electrochemistry experiments in undergraduate teaching laboratory experiments; thus, this chapter is presented in terms of reducing sample sizes for such experiments.;Chapter 4 begins to explore the development of receptors for the detection of DNT by attempting to determine the formation constants for the interaction of DNT with aliphatic amines in so-called "Meisenheimer complexes." However, we definitively show that DNT does not form an appreciable concentration of Meisenheimer complexes in the presence of amines in dimethylsulfoxide; rather, DNT is deprotonated. While developing the theory for interpretation of the Job's plot data collected for the interaction of DNT with these amines, a new method for quantitatively interpreting these plots was developed and is presented in Chapter 5. This method allows for quantitatively interpreting the type of interaction observed with a Job's plot by comparing the area under the curve to the reactant stoichiometry. In Chapter 6, the electrochemistry of DNT is further explored using cyclic voltammetry. We observe that DNT is reduced in two well-resolved electron transfers in aprotic media. Quantitative interpretation of these CVs is immensely complicated, as the radical anion formed by reduction of DNT is sufficiently basic to deprotonate neutral, uncharged DNT. Upon addition of an acidic species, the two reduction waves coalesce into a one-step, six-electron irreversible transfer. This is explained as the reduction of the two nitro groups to N-hydroxylamino groups.;Chapter 7 brings together the knowledge gained in Chapters 4 and 6 to construct a sensing device for DNT. In collaboration with Melissa Fierke from the Stein research group, a sensing electrode was constructed from 3-dimensionally ordered macroporous (3DOM) carbon. The surface of the 3DOM carbon monolith was modified by covalent attachment of a receptor molecule for DNT. Using cyclic and square wave voltammetry, the response of the electrode was characterized for DNT. These electrodes also showed selectivity over interferents commonly tested for DNT sensors. Chapter 8 explores increasing the electrochemical window for solvent/electrolyte systems. This research has a large bearing on increasing the bias voltage window accessible for electrochemical capacitor devices. While this chapter is a slight departure from the sensing theme of previous chapters, it does provide an increase in knowledge for the fundamental electrochemistry upon which electrochemical capacitors operate. Lastly, Chapter 9 summarizes the results that have been presented in this thesis and discusses the directions for possible continuation of this work.
机译:这项工作的主要目的是开发一种能够选择性结合和检测DNT的传感设备。因为以前已经显示出氟传感基质可以大大增强宿主-客体复合物的稳定性,所以这项工作的最终目标是将DNT-选择性受体掺入氟基质中,以增强敏感性和对DNT的选择性。因此,在第二章中,介绍了一种用于与氟基质进行电化学的电解质。作为概念证明,进行了二茂铁的循环伏安法。所得CV的定量拟合表明,氟相中二茂铁的转移系数完全在先前文献报道的范围内。相反,通过这种拟合确定的ko比通常用于电化学的溶剂低几个数量级。使用公认的Marcus理论,可以解释这种差异。由于用于伏安法的电解质目前尚无法在市场上买到,因此不希望使用大体积的样品。因此,第3章介绍了一个样品池,该样品池允许以200μL的样品体积执行循环伏安法。该样品池还具有大大减小通常用于大学教学实验室实验中的电化学实验的样品尺寸的潜力。因此,本章从减少此类实验的样本量的角度来介绍本章。第4章通过尝试确定DNT与脂肪族胺相互作用的形成常数来探索用于检测DNT的受体的开发。 “迈森海默复合体。”然而,我们明确地表明,在二甲基亚砜中存在胺的情况下,DNT不会形成明显浓度的Meisenheimer配合物;而是DNT被去质子化。在发展用于解释DNT与这些胺相互作用时收集的Job的图数据解释的理论的同时,开发了一种定量解释这些图的新方法,并在第5章中进行了介绍。这种方法可以定量解释与DNT相互作用的类型。通过比较曲线下的面积与反应物的化学计量比得出乔布斯图。在第六章中,使用循环伏安法进一步探讨了DNT的电化学。我们观察到,在非质子传递介质中,两个完全分辨的电子转移减少了DNT。这些CV的定量解释非常复杂,因为DNT还原形成的自由基阴离子足以使中性的,不带电的DNT质子化。加入酸性物质后,两个还原波合并为一步式六电子不可逆转移。这可以解释为两个硝基还原为N-羟氨基。第七章将在第四章和第六章中获得的知识综合起来,构建了用于DNT的传感装置。与Stein研究小组的Melissa Fierke合作,由3维有序大孔(3DOM)碳构成了感应电极。 3DOM碳单块的表面通过DNT受体分子的共价连接进行修饰。使用循环和方波伏安法,对DNT表征了电极的响应。这些电极还显示出对通常为DNT传感器测试的干扰物的选择性。第8章探讨了如何增加溶剂/电解质系统的电化学窗口。这项研究对增加电化学电容器器件可利用的偏置电压窗口有重要意义。尽管本章与前几章的传感主题略有不同,但确实增加了电化学电容器操作所基于的基本电化学知识。最后,第9章总结了本文提出的结果,并讨论了继续进行这项工作的方向。

著录项

  • 作者

    Olson, Eric James.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号