首页> 外文学位 >First principles calculation of material properties of group IV elements and III-V compounds.
【24h】

First principles calculation of material properties of group IV elements and III-V compounds.

机译:第四组元素和III-V化合物的材料性能的第一原理计算。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents first principles calculations on the properties of group IV elements and group III-V compounds. It includes investigations into what structure a material is likely to form in, and given that structure, what are its electronic, optical, and lattice dynamical properties as well as what are the properties of defects that might be introduced into the sample. The thesis is divided as follows:;• Chapter 1 contains some of the conceptual foundations used in the present work. These involve the major approximations which allow us to approach the problem of systems with huge numbers of interacting electrons and atomic cores.;• Then, in Chapter 2, we discuss one of the major limitations to the DFT formalism introduced in Chapter 1, namely its inability to predict the quasiparticle spectra of materials and in particular the band gap of a semiconductor. We introduce a Green's function approach to the electron self-energy Σ known as the GW approximation and use it to compute the quasiparticle band structures of a number of group IV and III-V semiconductors.;• In Chapter 3 we present a first-principles study of a number of high-pressure metastable phases of Si with tetrahedral bonding. The phases studied include all experimentally determined phases that result from decompression from the metallic β-Sn phase, specifically the BC8 (Si-III), hexagonal diamond (Si-IV), and R8 (Si-XII). In addition to these, we also study the hypothetical ST12 structure found upon decompression from β-Sn in germanium.;• Our attention is then turned to the first principles calculations of optical properties in Chapter 4. The Bethe-Salpeter equation is then solved to obtain the optical spectrum of this material including electron-hole interactions. The calculated optical spectrum is compared with experimental data for other forms of silicon commonly used in photovoltaic devices, namely the cubic, polycrystalline, and amorphous forms.;• In Chapter 5 we present first principles calculations of the quasiparticle and optical excitation spectra of recently predicted silicon and germanium polytypes in the body-centered-tetragonal (bct) structure. The quasiparticle spectra calculated within the GW approximation predict that both silicon and germanium in the bct structure are small band gap materials. The optical spectra are then evaluated by solving the Bethe-Salpeter equation taking into account.;• We examine the low-pressure phases of Ge in Chapter 6 by performing first principles calculations of the electronic structure and lattice dynamics of the R8, BC8, ST12, and hexagonal diamond structures of Ge. To aid future experimental investigation, we include predictions of the Raman-active frequencies of these phases as well as present the full phonon dispersion throughout the zone.;• In Chapter 7 we demonstrate how first principles calculations can be used to predict new structures. In a study aimed at finding new useful forms of silicon, we use an ab initio random structure searching (AIRSS) method to identify a new phase of silicon in the Ibamstructure. The Ibam phase is found to be semimetallic within density functional theory with a small band overlap, and it is expected that quasiparticle corrections using the GW approximation would yield a semiconducting state with a small band gap.;• We present a first-principles study of boron and phosphorus substitutional defects in Si-XII in Chapter 8. Recent result from nanoindentation experiments reveal that the Si-XII phase is semiconducting and has the interesting property that it can be doped n- and p-type at room temperature without an annealing step. Using the hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE), we examine the formation energies of the B and P defects at the two distinct atomic sites in Si-XII to find on which site the substitutional defects are more easily accommodated. We also estimate the thermodynamic transition levels of each defect in its relevant charge states. (Abstract shortened by UMI.).
机译:本文提出了关于IV族元素和III-V族化合物性质的第一性原理计算。它包括对材料可能形成何种结构的研究,并在给定该结构的情况下,研究其电子,光学和晶格动力学性质以及可能引入样品中的缺陷的性质是什么。本文分为以下几部分:•第1章包含了本工作中使用的一些概念基础。这些涉及主要近似,这使我们能够处理具有大量相互作用的电子和原子核的系统的问题。•然后,在第二章中,我们讨论了在第一章中介绍的DFT形式主义的主要限制之一,即它的DFT形式主义。无法预测材料的准粒子光谱,尤其是半导体的带隙。我们对电子自能Σ引入了格林函数方法,称为GW近似,并用它来计算许多IV和III-V族半导体的准粒子能带结构。•在第3章中,我们给出了第一性原理。对具有四面体键合的硅高压亚稳相的研究。研究的相包括从金属β-Sn相减压产生的所有实验确定的相,特别是BC8(Si-III),六角形金刚石(Si-IV)和R8(Si-XII)。除此之外,我们还研究了从锗中的β-Sn减压后发现的假设ST12结构。•然后我们将注意力转向第4章中的光学性质的第一性原理计算。然后将Bethe-Salpeter方程求解为获得该材料的光谱,包括电子-空穴相互作用。将计算出的光谱与光伏设备中常用的其他形式的硅(即立方,多晶和非晶形式)的实验数据进行比较;•在第5章中,我们介绍了最近预测的准粒子和光学激发光谱的第一原理计算体心四边形(bct)结构中的硅和锗多型。在GW近似值内计算的准粒子光谱预测,bct结构中的硅和锗都是小带隙材料。然后考虑到Bethe-Salpeter方程,对光谱进行评估。;•我们通过对R8,BC8,ST12的电子结构和晶格动力学进行第一性原理计算,研究了第六章中的Ge的低压相。和Ge的六角形菱形结构。为了帮助将来进行实验研究,我们包括对这些相的拉曼活性频率的预测,并给出整个区域中整个声子的色散。•在第7章中,我们演示了如何使用第一性原理计算来预测新结构。在旨在寻找新的有用形式的硅的研究中,我们使用从头算随机结构搜索(AIRSS)方法来识别Ibam结构中新的硅相。在密度泛函理论中,发现伊巴姆相是半金属的,具有很小的能带重叠,并且可以预期,使用GW近似的准粒子校正将产生带隙小的半导体状态。;•我们提出了第一性原理研究第8章中的Si-XII中的硼和磷取代缺陷。纳米压痕实验的最新结果表明,Si-XII相是半导体性的,并且具有令人感兴趣的特性,它可以在室温下掺杂n型和p型,而无需退火步骤。 。使用Heyd,Scuseria和Ernzerhof(HSE)的混合功能,我们检查了Si-XII中两个不同原子位点处B和P缺陷的形成能,以发现更容易容纳替换缺陷的位置。我们还估计了每个缺陷在其相关电荷状态下的热力学转变水平。 (摘要由UMI缩短。)。

著录项

  • 作者

    Malone, Brad Dean.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Physics Condensed Matter.;Physics Theory.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 217 p.
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号