首页> 外文学位 >The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification.
【24h】

The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification.

机译:用于从蒸汽加氢气化中去除含硫物质的暖气净化技术的发展。

获取原文
获取原文并翻译 | 示例

摘要

The steam hydrogasification reaction (SHR) refers to the thermochemical conversion of carbonaceous materials into synthetic gas in a steam and hydrogen environment. The formation of gaseous sulfur species from the solid sulfur in the feedstock is commonplace in thermochemical processes. It requires the cleaning of the output gas to protect the operation of downstream processes and catalysts. This thesis presents the results of an experimental study to determine the effect of temperature, steam and H2 partial pressure has on the distribution of the various gaseous sulfur species in the outlet gas of the SHR. Experiment results showed that sulfur in the feedstock is mainly converted to H2S in the SHR process. COS and CS2 were undetectable. The H2 and steam rich environment in the SHR process are favorable for the formation of H2S and suppress the COS and CS2 formation. An increase of H2S concentration was observed with the rise in temperature from 700°C to 800°C. An increase in the partial pressure of H2 decreased the H2S concentration released in the gas phase.;A lab-scale warm gas cleanup system was developed by using commercial ZnO sorbents based above results. A mixture gas simulated the composition of syngas from steam hydrogasification reaction was used as the feed gas. The effect of space velocity and gas composition on H2S breakthrough time was studied. It was found that H2S breakthrough time and sulfur capture capacity increased as the space velocity decreased. Moreover, addition of H2 or CH4 to the inlet gas stream has the positive effect on H2S breakthrough time. However, Addition of CO to the inlet gas stream decreased H2S breakthrough time. And addition of low content of CO2 to the inlet gas stream almost has no influence on H2S breakthrough time.;Techno-economic analysis was performed based on experimental and Aspen Plus simulation results in order to design warm gas cleanup system for CE-CERT process. Warm gas cleanup process by using regenerable sorbent is feasible for high capacity plant (syngas feed >=1000 tonne/day). And warm gas cleanup process by using disposable sorbent is more feasible for low capacity plant (syngas feed <1000 tonne/day). Economic sensitivity results showed that H2 availability and price is the most influential parameter affecting the cost for warm gas cleanup process by using regenerable sorbent, while ZnO sorbent price is the most influential parameters affecting the cost for warm gas cleanup process by using disposable sorbent.
机译:蒸汽加氢气化反应(SHR)是指在蒸汽和氢气环境中将碳质材料热化学转化为合成气。在热化学过程中,原料中的固态硫形成气态硫是很常见的。它需要净化输出气体以保护下游工艺和催化剂的运行。本文提出了一项实验研究的结果,以确定温度,蒸汽和氢气分压对SHR出口气体中各种气态硫物种分布的影响。实验结果表明,在SHR工艺中,原料中的硫主要转化为H2S。 COS和CS2无法检测到。 SHR过程中的H2和富蒸汽环境有利于H2S的形成,并抑制COS和CS2的形成。随着温度从700°C升高到800°C,H2S浓度增加。氢气分压的增加降低了气相中释放出的硫化氢浓度。模拟来自蒸汽加氢气化反应的合成气组成的混合气用作进料气。研究了空速和气体成分对硫化氢穿透时间的影响。发现随着空速的降低,H2S的穿透时间和硫的捕集能力增加。此外,在进气流中添加H2或CH4对H2S突破时间有积极影响。但是,向进气流中添加CO减少了H2S突破时间。并且在进气流中添加低含量的二氧化碳几乎不会影响H2S的穿透时间。;基于实验和Aspen Plus模拟结果进行了技术经济分析,以设计用于CE-CERT工艺的温热净化系统。对于高容量工厂(合成气进料> = 1000吨/天),通过使用可再生吸附剂进行的热气净化工艺是可行的。对于低容量工厂(合成气进料<1000吨/天),使用一次性吸附剂进行温热气体净化工艺更为可行。经济敏感性结果表明,H2的可用性和价格是使用可再生吸附剂影响暖气净化过程成本的最重要参数,而ZnO吸附剂价格是使用一次性吸附剂影响暖气净化过程成本的最重要参数。

著录项

  • 作者

    Luo, Qian.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号