首页> 外文学位 >Etude ab initio des proprietes electroniques et optiques d'un systeme donneur-accepteur organique utilise dans les cellules photovoltaiques.
【24h】

Etude ab initio des proprietes electroniques et optiques d'un systeme donneur-accepteur organique utilise dans les cellules photovoltaiques.

机译:从头开始研究光伏电池中使用的有机供体-受体系统的电子和光学性质。

获取原文
获取原文并翻译 | 示例

摘要

The search for new sources of clean and renewable energy has recently been encouraged by the growing energy demand caused by the industrialization of developing countries and by population growth. In this context, the generation of electricity through the exploitation of solar energy with photovoltaic cells is particularly interesting, since this energy source is largely unused compared to its full potential. Nevertheless, large scale electricity generation with the current design of photovoltaic cells based on silicon is hindered by the large manufacturing cost of these devices. A new generation of photovoltaic cells, which includes organic photovoltaic cells that use semiconducting polymers, is under intense development in order to significantly reduce the manufacturing costs. The replacement of conventional materials with conjugated polymers in photovoltaic cells opens the possibility of using large scale manufacturing processes to produce large-area devices at low cost. However, the power conversion efficiency and the lifetime of organic photovoltaic cells are currently too low for these devices to be cost effective. A better understanding of the organic photovoltaic process is therefore necessary to improve the power conversion efficiency of these devices.;The operating principle of photovoltaic cells requires the charge transfer between a polymer acting as an electron donor and a molecule acting as an electron acceptor to enable the dissociation of photogenerated excitons into free charge carriers. Furthermore, to ensure that the majority of the photogenerated excitons dissociates, the active region of an organic photovoltaic cell is typically formed by a bulk heterojunction between the donor and the acceptor. Many experimental studies have shown that the power conversion efficiency of these devices, which is proportional to the product of their short-circuit current Isc with their open circuit potential Voc, is strongly governed by the microstructure of the bulk heterojunction defined as the local order of the two phases and the organization of the donor-acceptor interfaces. Even though these studies have helped to increase the efficiency of organic photovoltaic cells, the relations linking the microstructure of the bulk heterojunction to their electronic and optical properties are still to be established.;The objective of the research project is to computationally study the electronic and optical properties of organic bulk heterojunctions composed of regioregular poly(3-hexylthiophene) (rrP3HT) and C60, two materials typically used in organic photovoltaic cells. In this study, the microstructure of the donor-acceptor systems can be directly controlled, which facilitates the systematic study of the influence of this parameter on the electronic and optical properties of the organic bulk heterojunctions. The density functional theory (DFT) is used to study the ground state geometric and electronic properties of multiple bulk heterojunction systems, while the time dependent density functional theory (TDDFT) is used to study the optical properties of these systems. The SIESTA software package is used to study periodic systems representing perfectly crystalline materials.;The results obtained in this research project show that the power conversion efficiency of organic photovoltaic cells is strongly modulated by the microstructure of the bulk heterojunctions. Indeed, the size of the rrP3HT crystalline domains must be optimized to maximize the efficiency of the photovoltaic devices, since Voc and Isc have opposite behaviors with respect to π-stacking of the rrP3HT chains. In addition, the efficiency of organic photovoltaic cells could be improved by imposing geometrical constraints in the bulk heterojunctions through manufacturing methods in order to increase the value of Voc without altering the value of Isc. (Abstract shortened by UMI.).
机译:由于发展中国家的工业化和人口增长,对能源的需求不断增长,最近鼓励寻找新的清洁和可再生能源。在这种情况下,通过利用光伏电池利用太阳能来发电是特别令人感兴趣的,因为与该能源的全部潜力相比,该能源大部分未被使用。然而,这些装置的高制造成本阻碍了当前基于硅的光伏电池设计的大规模发电。为了显着降低制造成本,正在大力开发包括使用半导体聚合物的有机光伏电池在内的新一代光伏电池。在光伏电池中用共轭聚合物代替常规材料,开辟了使用大规模制造工艺以低成本生产大面积器件的可能性。但是,目前对于这些装置而言,有机光伏电池的功率转换效率和寿命太低,以致于无法实现成本效益。因此,必须对有机光伏工艺有一个更好的了解,以提高这些器件的功率转换效率。光伏电池的工作原理要求​​在充当电子给体的聚合物和充当电子受体的分子之间进行电荷转移光生激子解离成自由电荷载体。此外,为了确保大多数光生激子解离,有机光伏电池的活性区通常由施主与受主之间的本体异质结形成。许多实验研究表明,这些器件的功率转换效率与它们的短路电流Isc与开路电势Voc的乘积成正比,在很大程度上由体异质结的微观结构决定,该异质结的微观结构定义为这两个阶段以及供体-受体界面的组织。尽管这些研究有助于提高有机光伏电池的效率,但仍需要建立将整体异质结的微观结构与其电子和光学性能联系起来的关系。该研究项目的目的是通过计算研究电子和光学由规整的聚(3-己基噻吩)(rrP3HT)和C60组成的有机本体异质结的光学性质,这两种材料通常用于有机光伏电池。在这项研究中,可以直接控制供体-受体系统的微观结构,这有助于系统地研究该参数对有机本体异质结的电子和光学性质的影响。密度泛函理论(DFT)用于研究多个本体异质结系统的基态几何和电子性质,而时变密度泛函理论(TDDFT)用于研究这些系统的光学性质。 SIESTA软件包用于研究代表完美结晶材料的周期性系统。该研究结果表明,有机光伏电池的功率转换效率受到整体异质结微观结构的强烈调节。实际上,由于Voc和Isc在rrP3HT链的π堆积方面具有相反的行为,因此必须优化rrP3HT晶畴的大小以使光伏器件的效率最大化。另外,可以通过制造方法通过在体异质结中施加几何约束来提高有机光伏电池的效率,以增加Voc的值而不改变Isc的值。 (摘要由UMI缩短。)。

著录项

  • 作者

    Maillard, Arnaud.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Alternative Energy.;Physics Solid State.;Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号