首页> 外文学位 >Physical and chemical characterization of energetic nano-materials via theoretical modeling and spectrochemical analysis.
【24h】

Physical and chemical characterization of energetic nano-materials via theoretical modeling and spectrochemical analysis.

机译:通过理论建模和光谱化学分析对高能纳米材料进行物理和化学表征。

获取原文
获取原文并翻译 | 示例

摘要

The present work aims to characterize structural, morphological, and chemical properties of energetic nanoparticles with the aid of theoretical and experimental studies.; The first part develops a kinetic Monte Carlo algorithm to study the effect of particle-particle collision and exothermic coalescence events on primary particle sizes in a growing nano-aerosol. The results indicate that under certain process conditions, two coalescing nanoparticles can release sufficient energy and substantially exceed the background gas temperature. This increases atomic diffusivities and hastens the coalescence process. Typical results for silicon and titania nanoparticles show that increasing volume loading and decreasing pressure enhances non-isothermal sintering rates and produces larger primary particles. These results suggest the use of process parameters heretofore not considered in tailoring the microstructure of nanoparticles.; The second part develops a hybrid nodal model to study the effect of size-dependent surface tension on nanoparticle evolution during gas-particle conversions. It uses chemical reaction-based formalism to compute nuclei formation rates as opposed to the commonly used kinetic homogeneous nucleation expression based on steady-state assumption and capillarity approximation (size-independent constant surface tension). The results indicate that although quasi-steady state assumption is reasonable, the capillarity approximation significantly over-predicts particle sizes.; On the experimental side, Laser Induced Breakdown Spectroscopy (LIBS) is used for quantitative estimation of elemental composition of nano-aerosols using an internal standard. The methodology uses time-resolved atomic emission spectra and plasma temperatures to calculate species densities calibrated with background gas densities under the same experimental conditions. The method is applied to determine the extent of oxidative coating on aluminum nanoparticles. The aim is to understand the reactivity of nano-materials and the stability of passivation coatings, such as metal oxides. The use of background gas as the internal standard mitigates the need for material standards and can be extended to the characterization of other multi-component aerosol systems.; This thesis also presents laser ablation technique to produce aluminum nanoparticles. Using various laser fluences, Al nanoparticles were generated with a production rate of 4--4.2 mg/hr having a size range of 17--75 nm and number concentrations of 3 x 105--3 x 106 #/cc.
机译:本工作旨在借助理论和实验研究来表征高能纳米颗粒的结构,形态和化学性质。第一部分开发了动力学蒙特卡洛算法,研究了不断增长的纳米气溶胶中颗粒间碰撞和放热聚结事件对一次粒径的影响。结果表明,在某些工艺条件下,两个聚结的纳米颗粒可以释放出足够的能量,并且大大超过了背景气体温度。这增加了原子扩散性并加速了聚结过程。硅和二氧化钛纳米粒子的典型结果表明,增加体积负荷和降低压力会提高非等温烧结速率,并产生较大的初级粒子。这些结果表明,在设计纳米颗粒的微观结构中尚未使用工艺参数。第二部分建立了一个混合节点模型,以研究尺寸依赖的表面张力对气体-颗粒转化过程中纳米颗粒演化的影响。它使用基于化学反应的形式主义来计算核形成速率,这与基于稳态假设和毛细管近似(大小无关的恒定表面张力)的常用动力学均相成核表达式不同。结果表明,尽管准稳态假设是合理的,但毛细作用近似值显着高估了粒径。在实验方面,激光诱导击穿光谱法(LIBS)用于使用内标物定量评估纳米气溶胶的元素组成。该方法使用时间分辨的原子发射光谱和等离子体温度来计算在相同实验条件下用背景气体密度校准的物质密度。该方法用于确定铝纳米颗粒上氧化涂层的程度。目的是了解纳米材料的反应性和钝化涂层(例如金属氧化物)的稳定性。使用背景气体作为内标可减轻对材料标准的需求,并可扩展到其他多组分气溶胶系统的表征。本文还提出了激光烧蚀技术制备铝纳米颗粒。使用各种激光注量,以4--4.2 mg / hr的生产速度生成Al纳米颗粒,尺寸范围为17--75 nm,数量浓度为3 x 105--3 x 106#/ cc。

著录项

  • 作者

    Mukherjee, Dibyendu.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号