首页> 外文学位 >The fabrication and characterization of double-gyroid and thin film photovoltaics.
【24h】

The fabrication and characterization of double-gyroid and thin film photovoltaics.

机译:双螺旋和薄膜光伏电池的制造与表征。

获取原文
获取原文并翻译 | 示例

摘要

Renewable energy can offer cleaner sources of electricity, and photovoltaics have perhaps the greatest potential due to the large quantity of solar power that hits the earth's surface. However, the cost of electricity from photovoltaics is still too high. There are two paths for reducing this cost, the first being cheaper manufacturing. Our research group explores this option by looking at Cu2ZnSn(S,Se)4 (CZTSSe) thin film devices deposited by nanocrystal inks, which use earth abundant materials, and can be made using cheap deposition processes. The second path is increasing solar cell efficiency. We've explored this route using double-gyroid (DG) nanostructure devices that should be capable of multiple exciton generation (MEG), a kind of photophysics that allows for increased photocurrent and device efficiency.;Electrical characterization of our thin film devices shows a back contact barrier of 75 meV exists in our CIGSe device. CZTSSe devices have a defect level at 57 meV above its valence band, most likely due to a copper on zinc antisite. This defect acts as the main acceptor state. The device's series resistance increases drastically with decreasing temperature. Interestingly, this correlates with increasing photoluminescence at an energy of 1.5 eV, correlating with a trap state in the CdS layer of the device. These results suggest that the CdS layer could be the source of increasing series resistance with temperature.;With DG research, electrodeposited lead selenide was improved using new applied potential techniques and additives in solution, leading to less roughness and greater surface coverage. Bulk PbSe devices showed very nice diode behavior. CdSe and CdTe films were also electrodeposited, and films were improved by optimizing post-deposition techniques to make bulk CdTe devices with efficiencies over 4%. With DG films, an increased band gap was measured in DG PbS (0.11 eV increase) and CdSe films (0.05-0.14 eV increase), indicating quantum confinement. DG PbSe devices were electrodeposited by a number of techniques, but so far have shown only diode behavior and no photocurrent.;Concerned that recombination was limiting our devices, a new, fully analytic model was constructed that allows us to consider the effect of a wide range of parameters on nanostructured devices. A voltage-dependent photocurrent is calculated that accounts for charge transport by both drift and diffusion. The dark current accounts for bulk and interfacial Shockley-Read-Hall recombination. Our model suggests that DG devices will require low interfacial recombination velocities (104 cm/s). We also performed calculations using the detailed balance limit including a non-radiative recombination term. These calculations show that there is a significant shift in the ideal band gap for photovoltaics utilizing MEG. Even with a microsecond minority carrier lifetime, it shifts to 0.93 eV from 0.70 eV.
机译:可再生能源可以提供更清洁的电力来源,而光伏发电具有最大的潜力,这是因为大量的太阳能袭击了地球的表面。但是,光伏发电的成本仍然太高。有两种降低成本的途径,第一种是降低制造成本。我们的研究小组通过研究纳米晶体油墨沉积的Cu2ZnSn(S,Se)4(CZTSSe)薄膜器件来探索这种选择,该薄膜器件使用了富含地球的材料,并且可以使用廉价的沉积工艺来制造。第二条途径是提高太阳能电池效率。我们已经使用双陀螺(DG)纳米结构器件探索了这条路线,该器件应能够产生多个激子产生(MEG),这是一种光物理性质,可以提高光电流和器件效率。;我们的薄膜器件的电学表征表明我们的CIGSe设备中存在75毫伏的背接触势垒。 CZTSSe器件在其价带之上的缺陷水平为57 meV,最有可能是由于铜对锌的反位。该缺陷充当主要受体状态。器件的串联电阻随着温度的降低而急剧增加。有趣的是,这与在1.5 eV的能量下增加的光致发光有关,与器件的CdS层中的陷阱状态有关。这些结果表明,CdS层可能是随温度增加的串联电阻的来源。;通过DG研究,使用新应用的潜在技术和溶液中的添加剂改进了电沉积硒化铅,从而降低了粗糙度并提高了表面覆盖率。块状PbSe器件显示出非常好的二极管性能。还对CdSe和CdTe薄膜进行了电沉积,并通过优化后沉积技术对薄膜进行了改进,以制造效率超过4%的大块CdTe器件。对于DG膜,测得DG PbS(增加0.11 eV)和CdSe膜(增加0.05-0.14 eV)中的带隙增加,表明量子受限。 DG PbSe器件是通过多种技术进行电沉积的,但到目前为止,仅显示了二极管的行为,而没有光电流。;考虑到重组限制了我们的器件,我们构建了一个全新的,完全分析的模型,该模型可以让我们考虑广泛的影响。纳米结构器件的参数范围。计算出取决于电压的光电流,该光电流考虑了通过漂移和扩散进行的电荷传输。暗电流导致大量和界面Shockley-Read-Hall重组。我们的模型表明,DG设备将需要较低的界面重组速度(<104 cm / s)。我们还使用包括非辐射重组项在内的详细余额限制进行了计算。这些计算表明,利用MEG的光伏电池的理想带隙发生了很大变化。即使具有一微秒的少数载流子寿命,它也会从0.70 eV变为0.93 eV。

著录项

  • 作者

    McCarthy, Robert F.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Chemical.;Nanoscience.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号