首页> 外文学位 >Physiologically based model development and parameter estimation: Benzene dosimetry in humans and respiratory irritation response in rodents.
【24h】

Physiologically based model development and parameter estimation: Benzene dosimetry in humans and respiratory irritation response in rodents.

机译:基于生理的模型开发和参数估算:人体中的苯剂量和啮齿动物的呼吸道刺激反应。

获取原文
获取原文并翻译 | 示例

摘要

One can form mathematical equations based on a combination of chemistry, physics, and biological information to represent a physiological system. Once a model is formulated based on the physiological system, we must make sure that the inputs or parameters to the model also faithfully represent the system. In this study, we adapt and combine existing mathematical models to describe different physiological systems.; Benzene is myelotoxic and causes leukemia in humans when they are exposed to high doses by inhalation (>1 ppm) for extended periods; however, leukemia risks in humans at lower exposures are uncertain. Benzene occurs widely in the work environment and in outdoor air, although mostly at concentrations below 1 ppm. Hence, we recognize the importance of assessing the risk to humans when they are exposed to benzene at low concentrations. In Chapter 2, we describe a physiologically based pharmacokinetic (PBPK) model for the uptake and elimination of benzene in humans to relate the concentration of inhaled benzene to the tissue doses of benzene and its key metabolites, benzene oxide, phenol, and hydroquinone. To account for variability among humans, the mathematical model must be integrated into a statistical framework that acknowledges sources of variation in the data due to inherent intra- and inter-individual variation, measurement error, and other data collection issues. The main contribution of Chapter 2 is the estimation of population distributions of key PBPK model parameters. In particular, a Markov Chain Monte Carlo (MCMC) technique is employed to fit the mathematical model to two data sets, thereby updating the estimated parameter distributions. We first considered only variability in metabolic parameters, as observed in previous in vitro studies, but found that it was not sufficient to explain observed variability in benzene pharmacokinetics. Variability in physiological parameters, such as organ weights, must also be included to faithfully predict the observed human population variability.; Inhaled gases can also cause respiratory depression by irritating (stimulating) nerves in the nasal cavity. In order to better understand how the nervous system responds to such chemicals, we have created a model to describe how the presence of irritants affects respiration in the rat. (Abstract shortened by UMI.)
机译:可以基于化学,物理和生物学信息的组合来形成数学方程式,以表示一种生理系统。一旦根据生理系统制定了模型,我们必须确保模型的输入或参数也能忠实地代表系统。在这项研究中,我们改编并结合了现有的数学模型来描述不同的生理系统。苯长时间暴露于高剂量吸入(> 1 ppm)下会导致人类白血病,并引起白血病。然而,在较低暴露水平下人类的白血病风险尚不确定。苯广泛存在于工作环境和室外空气中,尽管大多数浓度低于1 ppm。因此,我们认识到评估低浓度苯接触人类的风险的重要性。在第2章中,我们描述了一种基于生理学的药代动力学(PBPK)模型,用于人体吸收和消除苯,将吸入的苯的浓度与组织及其中的苯及其主要代谢产物,氧化苯,苯酚和对苯二酚的剂量相关。为了说明人与人之间的差异,必须将数学模型集成到一个统计框架中,该框架应承认由于个体内部和个体之间固有的变异,测量误差和其他数据收集问题而导致的数据变异来源。第2章的主要贡献是估算关键PBPK模型参数的总体分布。特别地,采用马尔可夫链蒙特卡洛(MCMC)技术将数学模型拟合到两个数据集,从而更新估计的参数分布。正如先前的体外研究中所观察到的,我们首先仅考虑代谢参数的可变性,但是发现这不足以解释苯药代动力学中观察到的可变性。还必须包括生理参数的变化,例如器官重量,以忠实地预测观察到的人群变异性。吸入的气体还会刺激(刺激)鼻腔中的神经,从而导致呼吸抑制。为了更好地了解神经系统对此类化学物质的反应,我们创建了一个模型来描述刺激物的存在如何影响大鼠的呼吸。 (摘要由UMI缩短。)

著录项

  • 作者

    Yokley, Karen Alyse.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Health Sciences Toxicology.; Mathematics.; Health Sciences Pharmacology.; Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 毒物学(毒理学);数学;药理学;生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号