首页> 外文学位 >Dynamics and free-surface geometry of turbulent liquid sheets.
【24h】

Dynamics and free-surface geometry of turbulent liquid sheets.

机译:湍流液体片的动力学和自由表面几何形状。

获取原文
获取原文并翻译 | 示例

摘要

Turbulent liquid sheets have been proposed to protect solid structures in fusion power plants by attenuating damaging radiation. For the High-Yield Lithium-Injection Fusion Energy (HYLIFE-II) inertial fusion energy (IFE) power plant concept, arrays of molten-salt sheets form a sacrificial barrier between the fusion event and the chamber first wall while permitting target injection and ignition. Thick liquid protection can help make fusion energy commercially attractive by reducing chamber size and prolonging chamber lifetime. Establishing an experimental design database for this basic "building block" flow will provide valuable information about various thick liquid protection schemes and allow reactor designers to establish acceptable tolerances between chamber components.; Turbulent water sheets issuing downwards into ambient air were studied experimentally at Reynolds numbers of 53,000--120,000 and Weber numbers of 2,900--19,000 based on average velocity and the short dimension of the nozzle exit ('delta'). Initial conditions were quantified by the streamwise (x) and transverse (z) velocity components using laser-Doppler velocimetry just upstream of the nozzle exit. Characterization of the mean free-surface position and free-surface fluctuations, or surface ripple, and estimation of the amount of mass ejected as droplets from the free surface were quantified in the near-field (within 25'delta' of the nozzle exit). Surface ripple and mean sheet geometry were determined directly from planar laser-induced fluorescence visualizations of the free surface. The droplets due to the turbulent breakup of the jet, termed here the hydrodynamic source term, were measured using a simple collection technique to within 1'delta' of the nominal free surface of the jet. The influence of various passive flow control techniques such as removing low-momentum fluid at the free surface ("boundary-layer cutting") on sheet geometry, surface ripple, and turbulent breakup were also quantified. The data obtained in this research will allow designers of inertial fusion energy systems to identify the parameter ranges necessary for successful implementation of the thick liquid wall protection system.
机译:已经提出了湍流的液体薄片来通过削弱破坏性辐射来保护聚变电厂中的固体结构。对于高产量锂离子注入聚变能(HYLIFE-II)惯性聚变能(IFE)电站概念,熔融盐薄板阵列在聚变事件和反应室第一壁之间形成牺牲屏障,同时允许目标注入和点火。稠密的液体保护层可通过减小腔室尺寸和延长腔室寿命来帮助使聚变能在商业上具有吸引力。为该基本“构件”流程建立实验设计数据库将提供有关各种稠液保护方案的有价值的信息,并使反应堆设计者可以在腔室组件之间建立可接受的公差。根据平均速度和喷嘴出口的短尺寸(“三角形”),对在大气中向下扩散的湍流水床进行了研究,雷诺数为53,000--120,000,韦伯数为2,900--19,000。初始条件通过喷嘴出口上游的激光多普勒测速仪通过沿流速(x)和横向(z)的速度分量进行量化。在近场中(喷嘴出口的25'内)量化了平均自由表面位置和自由表面波动或表面波纹的特征,以及从自由表面以液滴形式喷射的质量的估计。 。表面波纹和平均片材几何形状直接由平面激光诱导的自由表面荧光可视化确定。使用简单的收集技术,将由于射流湍流破裂而产生的液滴(此处称为水动力源术语)测量到射流名义自由表面的1'增量内。还定量了各种被动流控制技术的影响,例如在自由表面去除低动量流体(“边界层切割”)对板几何形状,表面波纹和湍流破裂的影响。这项研究中获得的数据将使惯性聚变能量系统的设计人员能够确定成功实施厚液壁保护系统所需的参数范围。

著录项

  • 作者

    Durbin, Samuel Glen, II.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 228 p.
  • 总页数 228
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号