首页> 外文学位 >Modeling of multi-axial Bragg grating fiber optic sensors.
【24h】

Modeling of multi-axial Bragg grating fiber optic sensors.

机译:多轴布拉格光栅光纤传感器的建模。

获取原文
获取原文并翻译 | 示例

摘要

In this research, the Fiber Bragg Grating sensors are systematically studied. A unique superposition method is created to predict wavelength profile based on the strain distribution inside the sensor. Different load cases are studied by both experiments and simulations. FEM models are created to calculate strain distributions in structure and sensors for all cases studied. A unique characterization method of thermo-optical coefficient is presented based on the oil bath experiment. The step-shape load case is studied for non-embedded sensors. Partially loaded sensor generated two independent peaks. A unique transverse load transfer mechanism for embedded sensor is revealed. The transverse-direction strain in the fiber is the combination of the direct transverse load transferring and Poisson strain from the axial direction. Parametric study of the host material's modulus is conducted for the embedded sensors under both thermal and mechanical loads. The results show that the host material's modulus has great impact on the strain level in the sensor, which will further add complexity of signal interpretation. Strain gradient's effect on the sensor signal is studied by two experimental setups. 3-point bending and 4-point bending beam provide symmetric and asymmetric strain gradient respectively. The strain gradient will cause significant widening of the sensor's wavelength profile. The strain sensing capability of multi-axial multi-wavelength FBG sensor and single-axial sensor is evaluated. The multi-axial sensors have problems of K matrix inversion, transverse-direction load transferring and host material property dependency that prevent its real-life application. The single-axial sensor also has system error due to the transverse-direction load transferring. New single-axial sensor design is proposed to avoid this problem.
机译:在这项研究中,对光纤布拉格光栅传感器进行了系统的研究。创建了一种独特的叠加方法来基于传感器内部的应变分布来预测波长分布。通过实验和仿真研究了不同的工况。创建了FEM模型,以针对所有研究案例计算结构和传感器中的应变分布。基于油浴实验,提出了一种独特的热光系数表征方法。研究了非嵌入式传感器的阶梯状载荷工况。部分加载的传感器产生两个独立的峰。揭示了用于嵌入式传感器的独特横向载荷传递机制。纤维中的横向应变是直接横向载荷传递和轴向泊松应变的结合。在热和机械负载下,对嵌入式传感器进行主体材料模量的参数研究。结果表明,基质材料的模量对传感器的应变水平有很大影响,这将进一步增加信号解释的复杂性。通过两个实验装置研究应变梯度对传感器信号的影响。三点弯曲梁和四点弯曲梁分别提供对称和不对称的应变梯度。应变梯度将导致传感器的波长分布明显变宽。评价了多轴多波长FBG传感器和单轴传感器的应变传感能力。多轴传感器存在K矩阵求逆,横向载荷传递以及基质材料属性依赖性等问题,从而妨碍了其实际应用。由于轴向载荷传递,单轴传感器也存在系统误差。为了避免这个问题,提出了新的单轴传感器设计。

著录项

  • 作者

    Wang, Tong.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 207 p.
  • 总页数 207
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号