首页> 外文学位 >Advanced Integration of Devices Enabled by Laser Crystallization of Silicon.
【24h】

Advanced Integration of Devices Enabled by Laser Crystallization of Silicon.

机译:通过硅的激光结晶实现的设备的高级集成。

获取原文
获取原文并翻译 | 示例

摘要

The push for higher levels of performance drives research and innovation in all areas of electronics. Thus far, shrinking circuit sizes and development of new material systems have satisfied this need. Continued scaling and material improvements have become increasingly difficu simultaneously, more functionality is needed in smaller spaces. Advanced integration techniques provide a solution by engineering together previously incompatible systems.;The fabrication of high-performance devices typically requires high temperature processing steps. Since fabrication occurs sequentially, the high temperature prevents the direct integration of two high-performance layers, as completed devices cannot withstand the processing temperatures of subsequent steps. There are significant challenges to integrating process-incompatible systems, and techniques such as wafer bonding, heteroepitaxial growth, and various thin film technologies have shown limited success.;In this work, advanced integration is achieved through laser crystallization processes. Unique to laser methods is the ability to locally heat the surface of a material while keeping the underlying substrate at room temperature. This property allows for high performance electronic materials to be integrated with substrates of different functionalities. This thesis focuses on three key components for advanced integration: 1. Laser-crystallized electronic devices, 2. Relevant substrates for integration, and 3. The feasibility of integrating of laser-crystallized devices with low-temperature substrates.;Two types of laser-crystallized devices are explored. Thin-film, laser-crystallized silicon transistors are fabricated at low-temperatures and exhibit high mobilities above 400 cm22/Vs. Vertical structure diodes built from laser-crystallized silicon outperformed epitaxially-grown diodes of the same geometry.;Light emitting diode (LED) arrays are fabricated from compound semiconductor substrates and tested for display applications. These LED arrays are envisioned to sit underneath the laser-crystallized devices, enabling new applications where both high brightness and high performance transistors are needed. Substrates of low-κ dielectric material are also of interest, as they are widely used for their low capacitance properties. Preliminary results suggest that laser crystallization of silicon can be successfully performed on a low-κ dielectric.;In addition to enabling new device architectures, it is important for laser crystallization methods to leave the underlying layers unaffected. Simulations of the laser irradiation process predict substrate temperatures to reach only 70°C even when the surface reaches the melting temperature of silicon (1400°C). Integration feasibility is further investigated with measurements on conventional front-end field effect transistors. When comparing properties from wafers with and without laser processing, no changes in transistor characteristics are observed.;In all three components of work, proof-of-principle devices and concepts lay out the groundwork for future investigation. The developed technologies have promising applications in both the microelectronics and display industry. In particular, the integration of LEDs and laser-crystallized silicon enables a high-brightness microdisplay platform for head-mounted displays, pico projectors, and head-up displays.
机译:更高性能水平的推动推动了电子所有领域的研究和创新。迄今为止,缩小的电路尺寸和新材料系统的开发已经满足了这一需求。持续的缩放和材料改进变得越来越困难;同时,在更小的空间中需要更多的功能。先进的集成技术通过将以前不兼容的系统进行工程设计来提供解决方案。高性能设备的制造通常需要高温处理步骤。由于制造是顺序进行的,因此高温会阻止两个高性能层的直接集成,因为完成的器件无法承受后续步骤的处理温度。集成与工艺不兼容的系统面临着巨大的挑战,诸如晶圆键合,异质外延生长和各种薄膜技术之类的技术仅取得了有限的成功。在这项工作中,通过激光结晶工艺实现了高级集成。激光方法的独特之处在于能够局部加热材料的表面,同时将下面的基板保持在室温下。该特性允许将高性能电子材料与不同功能的基板集成在一起。本论文着重介绍高级集成的三个关键组成部分:1.激光晶化电子器件; 2.用于集成的相关衬底;以及3.激光晶化器件与低温衬底集成的可行性。探索结晶的设备。薄膜,激光晶化的硅晶体管是在低温下制造的,并具有高于400 cm22 / Vs的高迁移率。由激光结晶硅制成的垂直结构二极管的性能优于具有相同几何形状的外延生长二极管。发光二极管(LED)阵列由化合物半导体衬底制成,并经过了显示应用测试。预计这些LED阵列将位于激光结晶器件的下方,从而在需要高亮度和高性能晶体管的新应用中实现。低κ介电材料的衬底也很受关注,因为它们的低电容特性被广泛使用。初步结果表明,可以在低κ电介质上成功地进行硅的激光晶化。;除了实现新的器件架构之外,对于激光晶化方法来说,重要的是使下面的层不受影响。激光照射过程的模拟预测,即使表面达到硅的熔化温度(1400°C),衬底温度也只能达到70°C。通过对常规前端场效应晶体管的测量进一步研究了集成可行性。当比较采用和不采用激光处理的晶圆的性能时,未观察到晶体管特性的变化。在所有三个工作组件中,原理验证装置和概念为未来的研究奠定了基础。先进的技术在微电子和显示行业都有着广阔的应用前景。尤其是,LED和激光结晶硅的集成为头戴式显示器,微微投影仪和平视显示器提供了高亮度的微型显示器平台。

著录项

  • 作者

    Lee, Vincent W.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号