首页> 外文学位 >Impact of strain on memory and lateral power MOSFETs.
【24h】

Impact of strain on memory and lateral power MOSFETs.

机译:应变对存储器和横向功率MOSFET的影响。

获取原文
获取原文并翻译 | 示例

摘要

To circumvent the limitations of conventional scaling, the semiconductor industry incorporated strained silicon technology to boost the performance of digital logic devices. Since strain alters several semiconductor properties, its effect on all device parameters needs to be investigated. This work focuses on the effect of mechanical stress on memory and power devices.;Growth of digital electronics is largely attributed to the success of CMOS memory such as DRAM and Flash. The most significant device characteristic for memory is the duration of time for which the memory cell is capable of storing the data with integrity or 'retention time'. Using four-point wafer bending apparatus to apply mechanical stress the dependence of memory retention time on strain is studied. From measurements it was observed that while DRAM retention degenerates with mechanical stress, NVM improved with tensile stress.;Power MOSFETs are used as high current and voltage drivers in automotive, telecommunication and power industries. The two main figures of merit of power devices are their on-resistance and breakdown voltage. The design of these devices is complicated by the tradeoff between the requirements for minimum on-resistance and maximum breakdown voltage. This work focuses on the application of mechanical stress to improve the performance of Lateral Diffusion MOSFET. The device behavior was analyzed by measuring and extracting piezoresistance coefficients of these devices and by monitoring avalanche breakdown with mechanical stress. It was found that the on-resistance reduced with stress, while breakdown voltage remained a constant thus making strain a viable performance booster in these devices.;With the understanding of device behavior with strain, the application of stress via process was simulated with FLOOPS and Sentaurus process. The amount/type of stress present in device gives insight into strained device structure and performance.
机译:为了规避常规缩放的局限性,半导体行业采用了应变硅技术来提高数字逻辑器件的性能。由于应变会改变几种半导体特性,因此需要研究其对所有器件参数的影响。这项工作的重点是机械应力对存储器和功率器件的影响。数字电子产品的增长在很大程度上归功于DRAM和Flash等CMOS存储器的成功。存储器最重要的设备特性是存储单元能够以完整性或“保留时间”存储数据的持续时间。利用四点晶片弯曲装置施加机械应力,研究了存储器保持时间对应变的依赖性。从测量结果可以看出,虽然DRAM保留随着机械应力而退化,但NVM随着拉应力而改善。功率器件的两个主要优点是导通电阻和击穿电压。在最小导通电阻和最大击穿电压的要求之间进行权衡,使这些器件的设计变得复杂。这项工作集中在机械应力的应用上,以改善横向扩散MOSFET的性能。通过测量和提取这些器件的压阻系数并通过机械应力监测雪崩击穿来分析器件的性能。结果发现,导通电阻随着应力的降低而降低,而击穿电压保持恒定,从而使应变成为这些器件中可行的性能提升器。通过了解器件的应变特性,利用FLOOPS和应力模拟了通过工艺施加应力的过程。 Sentaurus过程。设备中存在的应力量/类型可以深入了解应变的设备结构和性能。

著录项

  • 作者

    Aghoram, Umamaheswari.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 86 p.
  • 总页数 86
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号