首页> 外文学位 >Development of a robust framework for real-time hybrid simulation: From dynamical system, motion control to experimental error verification.
【24h】

Development of a robust framework for real-time hybrid simulation: From dynamical system, motion control to experimental error verification.

机译:开发用于实时混合仿真的可靠框架:从动态系统,运动控制到实验误差验证。

获取原文
获取原文并翻译 | 示例

摘要

Real time hybrid simulation (RTHS) has increasingly been recognized as a powerful methodology to evaluate structural components and systems under realistic operating conditions. The idea is to explore and combine the advantages of numerical analysis with physical lab testing. Furthermore, the enforced real-time condition allows testing on rate dependent components. Although the concept is very attractive, challenges do exist that require an improved understanding of the methodology. One of the most important challenges in RTHS is to achieve synchronized boundary conditions between the computational and physical substructures. Test stability and accuracy are largely governed by the level of synchronization. The sensitivity of the RTHS system error to the de-synchronization error is analyzed, from which a worst-case substructure scheme is identified and verified experimentally. This de-synchronization error, which is largely associated with the actuator dynamics, is further analyzed, by studying the sensitivity of the actuator dynamics with respect to the actuator parameter variation.;The objective of this study is to develop and validate a robust RTHS framework. The framework hardware development include a reaction system, a servo-hydraulic actuation and control system, a digital signal processing system, and a steel moment resisting frame specimen. An H-infinity loop shaping design strategy is proposed to control the motion of actuator(s). Controller performance is evaluated using the worst-case substructure proportioning scheme. Both system analysis and experimental results show that the proposed H-infinity strategy can significantly improve the stability limit and test accuracy. Another key feature of the proposed strategy is its robust performance in terms of both parametric and non-parametric plant uncertainties, which inevitably exist in any physical system. Extensive validation experiments are performed successfully, including the challenges of multiple actuators dynamically coupled through a continuum frame specimen. These features assure the effectiveness of the proposed framework for more complex RTHS implementations.
机译:实时混合仿真(RTHS)已逐渐被视为一种在实际操作条件下评估结构组件和系统的强大方法。这个想法是探索并将数值分析的优势与物理实验室测试相结合。此外,强制实时条件允许对速率相关组件进行测试。尽管此概念非常吸引人,但确实存在挑战,需要更好地了解该方法。 RTHS中最重要的挑战之一是在计算和物理子结构之间实现同步边界条件。测试的稳定性和准确性在很大程度上取决于同步水平。分析了RTHS系统错误对失步错误的敏感性,从中确定了最坏情况的子结构方案并进行了实验验证。通过研究执行器动力学对执行器参数变化的敏感性,进一步分析了与执行器动力学有关的失步误差。本研究的目的是开发和验证可靠的RTHS框架。框架硬件开发包括反应系统,伺服液压致动和控制系统,数字信号处理系统以及抗钢矩框架标本。提出了一种H-无限循环成形设计策略来控制致动器的运动。使用最坏情况的子结构比例分配方案评估控制器性能。系统分析和实验结果均表明,所提出的H-无限策略可以显着提高稳定性极限和测试精度。所提出策略的另一个关键特征是其在参数不确定性和非参数不确定性方面的强大性能,这些不确定性不可避免地存在于任何物理系统中。成功地进行了广泛的验证实验,包括通过连续框架标本动态耦合的多个执行器的挑战。这些功能确保了所提出的框架对于更复杂的RTHS实施的有效性。

著录项

  • 作者

    Gao, Xiuyu.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering General.;Engineering Industrial.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号