首页> 外文学位 >Computational prediction and analysis of macromolecular interactions.
【24h】

Computational prediction and analysis of macromolecular interactions.

机译:大分子相互作用的计算预测和分析。

获取原文
获取原文并翻译 | 示例

摘要

Protein interactions regulate gene expression, cell signaling, catalysis, and many other functions across all of molecular biology. We must understand them quantitatively, and experimental methods have provided the data that form the basis of our current understanding. They remain our most accurate tools. However, their low efficiency and high cost leave room for predictive, computational approaches that can provide faster and more detailed answers to biological problems. A rigid-body simulation can quickly and effectively calculate the predicted interaction energy between two molecular structures in proximity. The fast Fourier-transform-based mapping algorithm FTMap predicts small molecule binding 'hot spots' on a protein's surface and can provide likely orientations of specific ligands of interest that may occupy those hot spots. This process now allows unique ligands to be used by this algorithm while permitting additional small molecular cofactors to remain in their bound conformation. By keeping the cofactors bound, FTMap can reduce false positives where the algorithm identifies a true, but incorrect, ligand pocket where the known cofactor already binds. A related algorithm, ClusPro, can evaluate interaction energies for billions of docked conformations of macromolecular structures. The work reported in this thesis can predict protein-polysaccharide interactions and the software now contains a publicly available feature for predicting protein-heparin interactions. In addition, a new approach for determining regions of predicted activity on a protein's surface allows prediction of a protein-protein interface. This new tool can also identify the interface in encounter complexes formed by the process of protein association---more closely resembling the biological nature of the interaction than the former, calculated, binary, bound and unbound states.
机译:蛋白质相互作用调节整个分子生物学中的基因表达,细胞信号传导,催化和许多其他功能。我们必须定量地理解它们,而实验方法已经提供了构成我们当前理解基础的数据。它们仍然是我们最准确的工具。但是,它们的低效率和高成本为预测,计算方法留下了空间,这些方法可以为生物学问题提供更快,更详细的答案。刚体仿真可以快速有效地计算邻近的两个分子结构之间的预测相互作用能。基于快速傅立叶变换的映射算法FTMap预测蛋白质表面上的小分子结合“热点”,并可以提供可能占据这些热点的特定目标配体的可能方向。现在,该过程允许该算法使用唯一的配体,同时允许其他小分子辅因子保持其结合构象。通过使辅因子保持结合,FTMap可以减少算法识别出已知辅因子已经结合的正确但不正确的配体口袋的假阳性。一种相关的算法ClusPro可以评估数十亿个大分子结构的对接构象的相互作用能。本论文报道的工作可以预测蛋白质-多糖相互作用,并且该软件现在包含可预测蛋白质-肝素相互作用的公开可用功能。另外,一种用于确定蛋白质表面上预测活性区域的新方法可以预测蛋白质-蛋白质界面。这种新工具还可以识别蛋白质结合过程形成的复合物的界面-与相互作用的生物学性质比以前的,计算的,二元的,结合的和未结合的状态更加相似。

著录项

  • 作者

    Mottarella, Scott Edward.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号