首页> 外文学位 >West African Seasonal Climate Variability and Predictability.
【24h】

West African Seasonal Climate Variability and Predictability.

机译:西非季节性气候变化和可预测性。

获取原文
获取原文并翻译 | 示例

摘要

The emerging hypotheses over the last two decades relating to the complex ocean-atmosphere coupled systems dynamics over the Atlantic and their teleconnectivity have been a focal point in continued efforts to elucidate further the interactions governing the high West African Sahel climate variability. Pursuant to this, a polymorphous ocean-atmosphere phenomenological model has been developed to investigate the Western Sahel seasonal (July-September; JAS) climate variability in 2008 using predictors over the period 1950-2008, primarily along three lines---causality inference, intermediary pathways and the generalized circulation patterns associated with them, but with respect to an extratropical North Atlantic Oscillation (NAO) hypothesis. It is prototypic in the sense that the integrated approach provides a solid diagnosis in its optimal detection, discrimination, extraction and combination of key ocean-atmosphere drivers of the region's climate operating under three independent timescales---monthly, bimonthly, and seasonal, into a consolidated form that enables a complete overhauling of the region's climate. Generally, it is more robust than the unconsolidated models, adjudged by the R² and Environmental Causality Impact (ECI) score statistics, using heterogeneous datasets that include NCEP/NCAR reanalysis, NOAA extended reconstructed sea surface temperature (ERSST) and CRU precipitation. The model comprises three main architectural components---Least Absolute Shrinkage and Selection Operator (LASSO) model and ECI Analysis Model (ECIAM), and Complex Coupled Association Rules Model (CCARM). While the study does not rule out anthropogenic forcing, vegetation dynamics, and various forms of feedbacks, it suggests important clues for addressing the dichotomous Sahel climate change projected by numerical climate models. This drive is investigated with the hypothesis that the disharmony between the models may be linked to their inability to capture the correct sign, or path, of the NAO forcing, as it modulates the low-level westerlies (LLWs) in the vicinity of the equatorial Atlantic modes. The driving hypothesis is validated based on five canonical metrics---support, confidence, p-value, ECI and R² statistics, as well as on dynamical consistency of the plausible pathways, comparing the Sahel Region to the Western Sahel. The standardized, generalized 200 hPa circulation, SST and precipitation regression composites over the Sahel Region and Western Sahel relative to the bimonthly (Dec/Jan) and monthly (Apr) NAO detection in the annual cycle for the former and latter but over the same timeframe are distinct, characterized by anomalous wet and dry conditions, respectively. The impacts associated with their pathways drop from R² skill scores of 0.67 and 0.71 over the Sahel Region and Western Sahel, respectively, with the NAO, to 0.50 and 0.65, without it, substantiating its extratropical forcing. Perhaps, this mechanism may be part of the bunch of disparities confronting the numerical models---one set captures a different NAO forcing over the Sahel Region, and another captures a different NAO forcing over the Western Sahel and represents it for the Sahel Region, producing bifurcated climates.;The model has catalogued the best set of predictors from an initial pool of 73 for investigating the predictability of the region's climate. Multi-year surface relative humidity (RH)---a meningitis-proxy, ensemble forecasts for April 1987-2010 over Ghana have subsequently been produced using just the monthly timescale predictors, up to a 12-month lead time---based on one, five, and ten-year moving window forecasts, using the FORECASTER Model. The results show that the mean accuracy ranges between 0.6-0.8, with the five and ten-year forecasts generally being more skillful than the one year. Physically, this may be ascribed to better predictability inherent in the semi-decadal to decadal predictors than in the interannual predictors. Strategic logistical planning may be based on these outcomes.
机译:在过去的二十年中,与大西洋上复杂的海洋-大气耦合系统动力学及其远程连通性有关的新假说一直是继续努力阐明控制西非萨赫勒地区高度气候变化的相互作用的焦点。据此,已经开发了一种多态的海洋-大气现象学模型,使用1950-2008年期间的预测因子,主要根据以下三个方面,研究了萨赫勒地区西部季节(7月至9月; JAS)的气候变异性-因果关系推断,中间路径和与之相关的广义环流模式,但关于温带北大西洋涛动(NAO)假设。从某种意义上说,这是典型的,综合方法可以最佳地发现,辨别,提取和组合该区域气候的关键海洋-大气驱动因素,并在三个独立的时间范围内(月度,双月度和季节度)进行综合诊断。可以对地区气候进行全面检查的综合形式。通常,它比非合并模型更鲁棒,该模型由R²和环境因果关系影响(ECI)得分统计确定,使用包括NCEP / NCAR重新分析,NOAA扩展重建海面温度(ERSST)和CRU降水在内的异构数据集。该模型包括三个主要的体系结构组件-最小绝对收缩和选择算子(LASSO)模型和ECI分析模型(ECIAM),以及复杂耦合关联规则模型(CCARM)。尽管该研究不排除人为强迫,植被动态和各种形式的反馈,但它为解决数值气候模型预测的萨赫勒二分气候变化提供了重要线索。对这种驱动力进行了以下假设研究:模型之间的不和谐可能与它们无法捕获NAO强迫的正确符号或路径有关,因为它调制了赤道附近的低层西风(LLW)。大西洋模式。根据五个典型指标(支持,置信度,p值,ECI和R²统计数据)以及合理路径的动态一致性(对萨赫勒地区与萨赫勒地区进行了比较)对驾驶假设进行了验证。萨赫勒地区和萨赫勒西部地区标准化,广义的200 hPa环流,SST和降水回归复合物,相对于前者和后者,但在同一时间范围内的年度周期中的每两个月(十二月/一月)和每月(四月)NAO检测是不同的,分别以异常的潮湿和干燥条件为特征。与它们的路径相关的影响从带有NAO的萨赫勒地区和西部萨赫勒地区的R²技能得分分别下降到0.67和0.71,没有NAO则下降到0.50和0.65,证实了其温带强迫。也许,这种机制可能是数值模型所面临的一大堆差异的一部分-一套捕获了整个萨赫勒地区的NAO强迫,另一套捕获了整个萨赫勒地区的NAO强迫,并代表了萨赫勒地区,该模型从最初的73个样本库中分类了最佳的预测变量集,以调查该地区气候的可预测性。多年的地面相对湿度(RH)-加纳1987年4月至2010年对脑膜炎的总体预报,随后仅使用每月时间尺度预报器(最长为12个月的交货期)得出-基于使用FORECASTER模型进行一年,五年和十年的移动窗口预测。结果表明,平均准确度在0.6-0.8之间,五年和十年的预测通常比一年更熟练。从物理上讲,这可以归因于半年代到十年的预测因子比年际预测因子固有的更好的可预测性。战略性后勤计划可能基于这些结果。

著录项

  • 作者

    Tetteh, Isaac Kow.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 African Studies.;Atmospheric Sciences.;Meteorology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号