首页> 外文学位 >Size- and shape-dependent electrochemistry of gold nanoparticles.
【24h】

Size- and shape-dependent electrochemistry of gold nanoparticles.

机译:金纳米粒子的尺寸和形状依赖性电化学。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation describes 1) size-dependent electrochemical oxidation/stripping of chemically synthesized gold nanoparticles (Au NPs), 2) copper underpotential deposition (Cu-UPD) on different sized chemically-synthesized and electrochemically-deposited Au NPs attached to glass/indium-tin-oxide (ITO) electrodes, and 3) electrochemical synthesis of Au nanoplates directly on glass/ITO electrodes. The motivation of this work was to better understand the characteristics and electrochemical properties of metal nanostructures with different sizes and shapes.;In copper underpotential deposition (UPD) studies, Au NPs were chemically-synthesized in solution by seed-mediated growth, and Au NPs were electrochemically deposited directly on the glass/ITO electrode from HAuCl4 in H2SO 4 by chronocoulometry. Potentials used were -0.2 V, 0.4 V, and 0.8 V versus Ag/AgCl and charges employed well 6x10-4 Coulombs (C), 1x10-3 C, and 6.6x10-3 C. Cyclic voltammograms (CVs) obtained on the electrodes in 0.01 M Cu(ClO4)2 plus 0.1 M HClO4 in the region from 0.1 to 1.6 V vs. Hg/HgO showed that the UPD-peak is highly sensitive to the size of the Au NPs. The amount of Cu deposited onto the Au surface was inversely proportional to the size of the NP. This shows that a more dense Cu UPD layer forms on smaller NPs, likely due to a greater number of defects with decreasing NP size. CVs obtained in the region from 0.8 to -0.7 V revealed a decrease in the reduction potential of Cu2+ from -508 mV to -553 mV with increasing NP size. This directly shows that smaller NPs are better catalysts for metal deposition.;We also electrochemically deposited Au NPs directly on the surface of the glass/ITO electrode from HAuCI4 in H2SO4 at a potential of 0.8 V versus Ag/AgCl using chronocoulometry for ~ 3 x10 -3 C, 6x10-3 C, 9x10-3 C, and 1.2x10 -2 C. We compared the yield of nanoplates formed under the different conditions and studied the mechanism of their growth. In addition, we obtained UV-vis spectra of the Au NPs and Au nanoplates. The growth mechanism involves: formation of uniformly distributed flower-like nanostructures, smashing into an irregular-shaped nanoplate and their growing, then etching and aggregation of the nanoplates with the nanoparticles. The maximum yield was observed 40-50%.;In this thesis, we describe the experimental setup used in this research and the results. The results of this research are very important for understanding the fundamental electrochemical properties of NPs, which could lead to applications in several different fields. It is very important to study the dependence of the properties of NPs on their size, shape, and composition as they possess a very different reactivity. Metal NPs can also be used as label in electrochemical analysis.;We synthesized Au nanoparticles with average diameters ranging from 5 to 45 nm by a chemical seed-mediated growth method and electrostatically attached them to amino-functionalized glass/ITO electrodes. Linear sweep voltammograms (LSVs) obtained on electrodes coated with Au NPs in 0.01 M potassium bromide plus 0.1 M HClO4 showed a positive shift in oxidation potential from 680±1 mV to 773±6 mV with increasing Au NP diameter, consistent with increasing NP stability with increasing size.
机译:本论文描述了1)化学合成的金纳米颗粒(Au NPs)的尺寸依赖性电化学氧化/剥离,2)附着在玻璃/铟-铝上的不同尺寸的化学合成和电化学沉积的Au NPs上的铜电位不足沉积(Cu-UPD)氧化锡(ITO)电极,以及3)直接在玻璃/ ITO电极上电化学合成Au纳米板。这项工作的目的是为了更好地了解具有不同尺寸和形状的金属纳米结构的特性和电化学性能。在铜欠电位沉积(UPD)研究中,金纳米颗粒是通过种子介导的生长化学合成的,溶液中是金纳米颗粒。通过计时容量法将H2SO 4中的HAuCl4直接电化学沉积在玻璃/ ITO电极上。相对于Ag / AgCl,使用的电势为-0.2 V,0.4 V和0.8 V,充电时使用6x10-4库仑(C),1x10-3 C和6.6x10-3 C的电荷。在电极上获得的循环伏安图(CV)在相对于Hg / HgO的0.1至1.6 V范围内的0.01 M Cu(ClO4)2加0.1 M HClO4中,表明UPD峰对Au NP的尺寸高度敏感。沉积在Au表面上的Cu的量与NP的大小成反比。这表明,在较小的NP上会形成更致密的Cu UPD层,这可能是由于NP尺寸减小而导致的缺陷数量更多。在0.8至-0.7 V的区域内获得的CV显示,随着NP尺寸的增加,Cu2 +的还原电势从-508 mV降低至-553 mV。这直接表明较小的NPs是更好的金属沉积催化剂。;我们还使用计时库仑法在3 x10的电导率下,将Agu和AgCl从HAuCl4在H2SO4中直接电化学沉积在玻璃/ ITO电极的表面,电势为0.8 V. -3 C,6x10-3 C,9x10-3 C和1.2x10 -2C。我们比较了在不同条件下形成的纳米板的产率,并研究了其生长机理。此外,我们获得了金纳米颗粒和金纳米板的紫外可见光谱。生长机理包括:形成均匀分布的花状纳米结构,粉碎成不规则形状的纳米板并使其生长,然后用纳米颗粒蚀刻和聚集纳米板。观察到最大产率为40-50%。;本文描述了本研究中使用的实验装置和结果。这项研究的结果对于理解NP的基本电化学性质非常重要,这可能导致其在多个不同领域的应用。研究NP的性质对它们的大小,形状和组成的依赖性非常重要,因为它们具有非常不同的反应性。金属NPs也可以用作电化学分析中的标记。我们通过化学种子介导的生长方法合成了平均直径为5至45 nm的Au纳米粒子,并将其静电附着到氨基官能化的玻璃/ ITO电极上。在0.01M溴化钾加0.1M HClO4中涂有Au NPs的电极上获得的线性扫描伏安图(LSVs)显示,随着Au NP直径的增加,氧化电势从680±1 mV到773±6 mV呈正移,这与NP稳定性的增加相一致随着尺寸的增加。

著录项

  • 作者

    Khachian, Irina V.;

  • 作者单位

    University of Louisville.;

  • 授予单位 University of Louisville.;
  • 学科 Chemistry Analytical.;Nanoscience.
  • 学位 M.S.
  • 年度 2012
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号