首页> 外文学位 >Velocity-control performance with a fingertip controlled admittance-type haptic device.
【24h】

Velocity-control performance with a fingertip controlled admittance-type haptic device.

机译:指尖控制的导纳型触觉设备的速度控制性能。

获取原文
获取原文并翻译 | 示例

摘要

Admittance-type robotic devices are commonly used to complete tasks that require a high degree of precision and accuracy because they appear nonbackdrivable to many disturbances from the environment. Admittance-type robots are controlled using admittance control; a human interacts directly with a force sensor mounted to the robot, and the robot is computer-controlled to move in response to the applied force. The experiment herein was conducted to determine under which operating conditions human velocity control is optimized for admittance devices that are controlled under proportional-velocity control, and to determine the degradation in control under nonoptimal conditions. In this study, the desired velocity of the device was shown on a visual display. The desired velocity was shown with a scaling factor from the actual velocity of the device because the device often moved at velocities too slow to perceive visually. The admittance gain, ka, desired velocity, Vd, and the visualization scale factor, S were tuned to adjust the user's experience when interacting with an admittance device. We found that in velocity-tracking tasks, scaling the visual feedback only has a significant effect on performance for very slow desired velocities (0.1 mm/s), for the range of velocities tested here. In this thesis, we give evidence that there exists a range of velocities and forces within which humans optimally interact with admittance-type devices. We found that the optimal range of velocities is between 0.4 mm/s and 1.0 mm/s, inclusive, and the optimal range of forces is between 0.4 N and 4.0 N, inclusive. To ensure optimal velocity-control performance, the admittance gain should be selected such that the desired velocity and target force remain within their respective optimal ranges simultaneously. We also found that on average subjects moved faster than the desired velocity when the desired velocity was 0.1 mm/s and subjects were slower than the desired velocity when it was higher than 0.4 mm/s. For each admittance gain there is a different threshold velocity at which velocity-control accuracy is optimal in the aggregate. If the device operates at a velocity that is faster or slower than the threshold velocity the operator will tend to lag or lead the desired velocity, respectively.
机译:导纳型机器人设备通常用于完成需要高度精确性的任务,因为它们似乎不可逆转地受到许多环境干扰。导纳型机器人通过导纳控制进行控制。人直接与安装在机器人上的力传感器进行交互,并且该机器人由计算机控制以响应施加的力而移动。本文进行的实验是为了确定在哪种操作条件下人体速度控制针对比例速度控制下的导纳装置进行了优化,并确定了非最佳条件下控制的退化。在这项研究中,设备的期望速度显示在视觉显示器上。由于设备经常以太慢的速度移动而无法从视觉上感知到,因此期望的速度以与设备实际速度成比例的比例因子显示。调整了导纳增益ka,所需速度Vd和可视化比例因子S,以调整与导纳设备交互时的用户体验。我们发现,在速度跟踪任务中,缩放视觉反馈仅对非常慢的所需速度(0.1 mm / s)的性能有显着影响,对于此处测试的速度范围而言。在本文中,我们提供了证据,证明了人类与导纳型设备最佳相互作用的速度和作用力范围。我们发现,速度的最佳范围在0.4 mm / s至1.0 mm / s(包括两端)之间,力的最佳范围在0.4 N至4.0 N(包括两端)之间。为了确保最佳的速度控制性能,应选择导纳增益,以使所需的速度和目标力同时保持在各自的最佳范围内。我们还发现,平均而言,当所需速度为0.1 mm / s时,对象的运动速度快于所需速度,而当目标速度高于0.4 mm / s时,对象的运动速度比所需速度慢。对于每个导纳增益,存在不同的阈值速度,在该速度下,总体速度控制精度最佳。如果设备以高于或低于阈值速度的速度运行,则操作员将倾向于分别滞后或领先于所需速度。

著录项

  • 作者

    Arbuckle, Troy K.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Engineering Mechanical.;Engineering Robotics.
  • 学位 M.S.
  • 年度 2012
  • 页码 48 p.
  • 总页数 48
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号