首页> 外文学位 >Exploiting micro-scale magnetic and acoustic phenomena in microfluidic devices for cell sorting applications.
【24h】

Exploiting micro-scale magnetic and acoustic phenomena in microfluidic devices for cell sorting applications.

机译:在微流控设备中利用微尺度的磁性和声学现象进行细胞分选应用。

获取原文
获取原文并翻译 | 示例

摘要

The capability to sort specific biological targets from complex mixtures is critical for many biomedical applications, ranging from in vitro diagnostics to cell-based therapies. As these applications expand and demands on performance increase, a need has arisen for new technologies that are capable of high-purity, high-throughput separation. The use of microfluidics and micro-systems technology is a compelling approach to meet this demand. In this thesis, we present a series of microfluidic devices that exploit sub-mm-lengthscale phenomena in magnetics and acoustics for high-performance cell and particle separation.;First, we show an architecture to enable separation of multiple magnetic targets in a simultaneous manner. We demonstrate the capability to simultaneously sort multiple multiple bacterial cell types with > 90% purity and > 500-fold enrichment at a throughput of 109 cells/h.;We next report the use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. We show that ultrasonic separation allows for gentle, scalable and label-free synchronization with high G1-phase synchrony (≈ 84%) and throughput (3 x 106 cells/h per microchannel).;Third, we discuss the integration of microfluidic acoutic and magnetic separation in a monolithic device for multi-parameter particle separation. Using our integrated device, we demonstrate high-purity separation of a multicomponent particle mixture at a throughput of up to 108 particles/h.;Subsequently, we describe a tunable acoustophoretic separation architecture capable of sorting cells and particles based on a range of sizes, analogous to a band-pass filter. We show that our device is capable of sorting an arbitrary particle size range between 3 and 10 mum in diameter with high efficiency (transfer fraction = 0.98 +/- 0.02) at a throughput of ≈ 10 8 particles/h per microchannel.;Finally, we discuss our ongoing efforts to develop a new device architecture for acoustic separation capable of greatly increased throughput. We demonstrate preliminary results showing separation of blood components at whole blood concentrations at a sample flow rate of about 1 L/h.
机译:从复杂混合物中分选出特定生物靶标的能力对于许多生物医学应用至关重要,从体外诊断到基于细胞的治疗均如此。随着这些应用的扩展以及对性能的要求不断提高,对能够进行高纯度,高通量分离的新技术的需求不断增加。微流体和微系统技术的使用是满足这种需求的一种令人信服的方法。在本文中,我们提出了一系列利用流体和声学中亚毫米级尺度现象的微流控设备,以实现高性能的细胞和颗粒分离。首先,我们展示了一种能够同时分离多个磁性靶标的体系结构。我们展示了以109个细胞/小时的吞吐量同时分类具有90%以上纯度和500倍富集的多种细菌细胞的能力。高通量且无试剂的细胞。我们证明了超声分离可以实现温和,可扩展且无标签的同步,并具有高G1相同步(≈ 84%)和通量(每个微通道3 x 106个细胞/小时)。第三,我们讨论了微流声的整合在单片装置中进行磁分离和多参数粒子分离。使用我们的集成设备,我们展示了多组分颗粒混合物的高纯度分离,其吞吐率高达108个颗粒/小时。随后,我们描述了一种可调谐的声电泳分离架构,该架构能够根据各种尺寸对细胞和颗粒进行分选,类似于带通滤波器。我们证明了我们的设备能够以≈的吞吐量高效地分选直径在3到10微米之间的任意粒径范围(转移分数= 0.98 +/- 0.02)。每个微通道10 8个粒子/小时。我们证明了初步结果,该结果显示了在全血浓度下以约1 L / h的样品流速分离血液成分。

著录项

  • 作者

    Adams, Jonathan D.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Physics Electricity and Magnetism.;Biophysics General.;Physics Acoustics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号