首页> 外文学位 >Tensile mechanical properties of isolated collagen fibrils obtained by micro-electromechanical systems technology.
【24h】

Tensile mechanical properties of isolated collagen fibrils obtained by micro-electromechanical systems technology.

机译:通过微机电系统技术获得的分离的胶原纤维的拉伸机械性能。

获取原文
获取原文并翻译 | 示例

摘要

Collagenous tissues (e.g. bone and tendon) have well organized hierarchical structures. To improve understanding of the mechanical behavior of collagenous tissues and to guide the development of multiscale models, mechanical testing at different length scales is required. Whole tissues, fascicles, and fibril bundles have been studied extensively, but little is known at the fibrillar level. Using microelectromechanical systems (MEMS) technology, tensile mechanical testing was performed on type I collagen fibril specimens isolated from the dermis of sea cucumbers. In air uniaxial tensile tests showed that the fibrils had a small strain elastic modulus of 860 +/- 450 MPa, a yield stress of 220 +/- 140 MPa, and a yield strain of 21% +/- 13%. In vitro fracture tests showed that the fibrils had an elastic modulus of 470 +/- 410 MPa, a fracture strength of 230 +/- 160 MPa, and a fracture strain of 80% +/- 44%. The fibrils displayed significantly lower elastic modulus in vitro than in air. Both the fracture strength/strain obtained in vitro and in air were significantly larger than those obtained in vacuo, indicating that the difference arises from the lack of intrafibrillar water molecules produced by vacuum drying. Fracture strength/strain of fibril specimens were different from those reported for collagenous structures of higher hierarchical levels, indicating the importance of obtaining these properties at the fibrillar level for multiscale modeling. In vitro coupled creep and stress relaxation tests demonstrated the intrinsic viscoelastic behavior of collagen fibrils. The stress-strain-time data were fitted using a Kelvin model consisting of a spring and a dashpot in parallel. The fibrils showed an elastic modulus of 180 +/- 100 MPa, a viscosity of 4.7 +/- 3.2 GPa*sec, and a relaxation time of 29 +/- 16 sec. The fibrillar relaxation time was smaller than the tissue-level relaxation time, suggesting tissue relaxation is dominated by non-collagenous components (e.g. proteoglycans). To our knowledge, in vitro fracture and viscoelastic properties of isolated collagen fibrils were measured for the first time. The mechanical properties obtained in this work can be used as input parameters for multiscale modeling and help guide the development of synthetic biomaterials.
机译:胶原组织(例如骨骼和肌腱)具有组织良好的层次结构。为了增进对胶原组织机械行为的理解并指导多尺度模型的发展,需要在不同的长度尺度上进行力学测试。整个组织,束和原纤维束已得到广泛研究,但在原纤维水平上知之甚少。使用微机电系统(MEMS)技术,对从海参真皮中分离出的I型胶原纤维样品进行了拉伸机械测试。在空气中,单轴拉伸试验表明,原纤维的应变弹性模量小,为860 +/- 450 MPa,屈服应力为220 +/- 140 MPa,屈服应变为21%+/- 13%。体外断裂试验表明,原纤维的弹性模量为470 +/- 410 MPa,断裂强度为230 +/- 160 MPa,断裂应变为80%+/- 44%。在体外,原纤维的弹性模量明显低于空气。在体外和在空气中获得的断裂强度/应变均显着大于在真空中获得的断裂强度/应变,表明差异是由于缺乏真空干燥产生的原纤维内水分子引起的。原纤维样品的断裂强度/应变与较高层次的胶原结构报道的断裂强度/应变不同,表明对于多尺度建模,在原纤维水平获得这些特性的重要性。体外耦合蠕变和应力松弛测试证明了胶原原纤维的固有粘弹性行为。应力-应变-时间数据使用由弹簧和平行的阻尼器组成的开尔文模型拟合。原纤维的弹性模量为180 +/- 100MPa,粘度为4.7 +/- 3.2GPa·sec,松弛时间为29 +/- 16sec。原纤维的松弛时间小于组织水平的松弛时间,表明组织松弛主要由非胶原成分(例如蛋白聚糖)主导。据我们所知,首次测量了分离的胶原纤维的体外断裂和粘弹性。在这项工作中获得的机械性能可以用作多尺度建模的输入参数,并有助于指导合成生物材料的开发。

著录项

  • 作者

    Shen, Zhilei Liu.;

  • 作者单位

    Case Western Reserve University.;

  • 授予单位 Case Western Reserve University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 255 p.
  • 总页数 255
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号