首页> 外文学位 >Calcium carbonate binding by microbial exopolymers.
【24h】

Calcium carbonate binding by microbial exopolymers.

机译:碳酸钙与微生物外聚合物的结合。

获取原文
获取原文并翻译 | 示例

摘要

Calcium carbonate (calcite) dissolution and precipitation reactions are important in biological, environmental, and industrial settings, and microorganisms mediate many of these reactions. Bacterially-produced exopolysaccharides (EPS) produced by calcite-inhabiting microorganisms vary in their monosaccharide and linkage compositions and have different binding strengths with the calcite surface depending on the chemical nature of the EPS. The chemical compositions of the EPS, the cation-binding sites therein, and their matching to atomic projections of calcium cations and carbonate anions on different calcite faces also dictate crystallographically-specific EPS-calcite interactions. A model polysaccharide, alginic acid, increases the dissolution rate of calcite six-fold at circumneutral and alkaline pH conditions. The dissolution occurs via preferential attack of the obtuse steps of dissolution pits. EDTA is used as a model ligand for comparison to the alginic acid surface reaction and, unexpectedly, occurs by a completely different mechanism, in which step velocity increases linearly with pit depth. Crystal defects initiate different types of pits on the calcite surface that control pit depth and, hence, a bimodal distribution of pits occurs where slow pits are attributed to clusters of point defects and fast pits are attributed to linear defects. Molecular modeling is used to investigate interactions of EPS with the calcite surface. Alginic acid conformation, configuration, and calcium binding all affect the molecular behavior and torsional stability of constituent disaccharides. All disaccharides have similar global energy minimum conformations under in situ conditions but aqueous cation binding allows less-favorable conformations. Development of a new hybrid molecular modeling force field allows dynamic simulation of a calcite surface with multilayered explicit hydration and inclusion of organic molecules. Hydration of the calcite surface alternately affects calcite calcium cation displacement and carbonate anion inversion for successive mineral monolayers with depth. Water molecules organize on the calcite surface in two coordinations, which affects the water molecule surface stability, and exchange and diffusion rates. Alginic acid disaccharides maintain conformations similar to the global energy minimum conformations previously determined and association with calcite-surface canons again allows alternate conformations. The number and proximity of electron-donating groups on the disaccharides determine variable sorption strengths with the calcite surface.
机译:碳酸钙(方解石)的溶解和沉淀反应在生物,环境和工业环境中很重要,微生物介导了许多此类反应。由方解石居住的微生物产生的细菌产生的胞外多糖(EPS)的单糖和键合组成各不相同,并与方解石表面具有不同的结合强度,具体取决于EPS的化学性质。 EPS的化学组成,其中的阳离子结合位点以及它们与钙离子和碳酸根阴离子在不同方解石面上的原子投影的匹配,也决定了晶体学上特定的EPS-方解石相互作用。模型多糖海藻酸可在环境pH和碱性pH条件下将方解石的溶解速率提高六倍。溶解是通过优先腐蚀溶解坑的钝化步骤而发生的。 EDTA用作与海藻酸表面反应进行比较的模型配体,出乎意料的是,它是通过完全不同的机理发生的,其中步速随凹坑深度线性增加。晶体缺陷在方解石表面上引发了不同类型的凹坑,这些凹坑控制了凹坑的深度,因此,出现了双峰分布的凹坑,其中缓慢凹坑归因于点缺陷簇,而快速凹坑归因于线性缺陷。分子建模用于研究EPS与方解石表面的相互作用。海藻酸的构象,构型和钙结合都影响组成二糖的分子行为和扭转稳定性。在原位条件下,所有二糖均具有相似的整体能量最小构象,但与水的阳离子结合会产生不利的构象。通过开发新的混合分子建模力场,可以对方解石表面进行动态模拟,该表面具有多层显着的水化作用并包含有机分子。方解石表面的水化交替影响方解石深层连续矿物单层的方解石钙阳离子位移和碳酸根阴离子转化。水分子以两种配位形式组织在方解石表面,这影响了水分子表面的稳定性以及交换和扩散速率。海藻酸二糖维持与先前确定的整体能量最小构象相似的构象,并且与方解石表面经典的结合再次允许替代构象。二糖上给电子基团的数目和邻近程度决定了方解石表面的可变吸附强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号