首页> 外文学位 >Study of Nanoparticle-Liquid Crystal Dispersions Using Optical Microscopy and Solid-State NMR.
【24h】

Study of Nanoparticle-Liquid Crystal Dispersions Using Optical Microscopy and Solid-State NMR.

机译:使用光学显微镜和固态NMR研究纳米颗粒液晶分散体。

获取原文
获取原文并翻译 | 示例

摘要

This Thesis presents the synthesis of a new family of liquid crystal (LC)-capped gold nanoparticles (AuNPs) for a rationalized miscibility and assembly in liquid crystal matrices.;A new protocol based on the thiol-for-dimethylaminopyridine (DMAP) ligand exchange reaction was developed to prepare 4-5 nm AuNPs with mono and binary capping layers made of alkanethiol (CH3(CH2)mSH; m = 5, 11) and liquid crystal ligand 4'-(n-mercaptoalkoxy)biphenyl-4-carbonitriles (CBO(CH2)nSH; n = 8, 12, 16). AuNPs with a 1 : 1 CH 3(CH2)5SH/CBO(CH2)12SH ratio were found to have an unprecedented miscibility in isotropic 4-n-pentyl-4'-cyanobiphenyl (5CB) and 4-n-octyl-4'-cyanobiphenyl (8CB) liquid crystals exceeding 25 wt% Au.;While low NP concentrations are normally used to avoid aggregation, concentrated dispersions of these AuNPs form new structures at the LC phase transitions through coupling of the interparticle attractive forces with the LC elastic interactions. Upon cooling to TN-I, the AuNPs form a reversible, micron-scale network by concentrating at the nematic-isotropic liquid interfaces. The network topology and LC director field orientation are controlled by the cooling rate, surface alignment, film thickness, AuNP concentration and ligand shell composition. Completely different structures are formed at the nematic to smectic phase transition. AuNPs dispersed in homotropically aligned LC films reversibly form macroscopic domains of curved or linear arrays with micron scale periodicities. Based on the variation of the arrays with boundary conditions, AuNPs are proposed to concentrate at the edge dislocation defects in the smectic phase.;The molecular interactions that determine the miscibility and assembly of the AuNPs in LCs were studied using multinuclear solid-state NMR and isotopically labeled AuNPs and LCs. The interaction of the host LC with the AuNP surfaces is striking manifested by partial alignment of the ligands. The detection of an isotropic-nematic biphasic region of the host LC matrix below T N-I is an important finding that will be used to refine theoretical models of the network formation.;Finally another type of nanoparticle network, formed by aerosil in a Schiff-base-type of LC with a small dipole moment was studied by wideline 2H NMR to investigate the effect of different surface anchoring strengths on the memory effects displayed by these dispersions.;Keywords: nanostructure, microstructure, self-assembly, organic template, long-range order, liquid crystal, thermotropic, cyanobiphenyl, nematic, smectic, Schiff-base, phase transition, edge dislocation, dispersion, miscibility, nanoparticle, ligand exchange reaction, binary monolayer, gold, silica oxide, surface Plasmon resonance, filled nematic, memory effect, polarized optical microscopy, solid-state NMR.
机译:本论文提出了一种新的液晶(LC)封顶的金纳米粒子(AuNPs)家族的合成,以实现在液晶矩阵中的合理混溶和组装。基于硫醇-二甲基氨基吡啶(DMAP)配体交换的新协议进行了反应以制备4-5 nm AuNPs,并具有由烷硫醇(CH3(CH2)mSH; m = 5,11)和液晶配体4'-(n-巯基烷氧基)联苯-4-腈( CBO(CH2)nSH; n = 8、12、16)。发现具有1:1 CH 3(CH2)5SH / CBO(CH2)12SH比的AuNP在各向同性的4-n-戊基-4'-氰基联苯(5CB)和4-n-辛基-4'中具有前所未有的混溶性-超过25 wt%Au的-氰基联苯(8CB)液晶;虽然通常使用低NP浓度来避免聚集,但这些AuNP的浓缩分散液通过粒子间引力与LC弹性相互作用的耦合在LC相变处形成新结构。冷却至TN-1后,AuNP通过集中在向列各向同性的液体界面上,形成了可逆的微米级网络。网络拓扑结构和LC指向矢场取向由冷却速率,表面排列,膜厚度,AuNP浓度和配体壳组成控制。向列相至近晶相的转变形成了完全不同的结构。分散在各向同性排列的LC膜中的AuNP可逆地形成具有微米级周期性的弯曲或线性阵列的宏观区域。基于边界条件下阵列的变化,提出了金纳米颗粒集中在近晶相边缘位错缺陷上的方法。利用多核固态NMR和分子筛研究了确定金纳米颗粒在液相色谱中的相容性和组装性的分子相互作用。同位素标记的AuNP和LC。主体LC与AuNP表面的相互作用通过配体的部分排列而显着体现。在T NI以下检测宿主LC基质的各向同性向列双相区域是一项重要发现,将用于完善网络形成的理论模型。最后,另一种类型的纳米颗粒网络是由Schiff碱中的aerosil形成的。宽线2H NMR研究了具有小偶极矩的LC型分子筛,研究了不同表面锚固强度对这些分散体所表现出的记忆效应的影响。关键词:纳米结构微观结构自组装有机模板长程有序,液晶,热致性,氰基联苯,向列型,近晶型,席夫碱,相变,边缘位错,分散性,可混溶性,纳米粒子,配体交换反应,二元单层,金,氧化硅,表面等离振子,填充向列型,记忆效应,偏振光学显微镜,固态NMR。

著录项

  • 作者

    Milette, Jonathan.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 254 p.
  • 总页数 254
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号