首页> 外文学位 >Modeling of Thermofluid Phenomena in Segmented Network Simulations of Loop Heat Pipes.
【24h】

Modeling of Thermofluid Phenomena in Segmented Network Simulations of Loop Heat Pipes.

机译:回路热管分段网络仿真中的热流体现象建模。

获取原文
获取原文并翻译 | 示例

摘要

The overarching goal of the work presented in this thesis is to formulate, implement, test, and demonstrate cost-effective mathematical models and numerical solution methods for computer simulations of fluid flow and heat transfer in loop heat pipes (LHPs) operating under steady-state conditions.;A segmented network thermofluid model for simulating steady-state operation of conventional LHPs with cylindrical and flat evaporators is proposed. In this model, the vapor-transport line, condenser pipe, and liquid-transport line are divided into longitudinal segments (or control volumes). Quasi-one-dimensional formulations, incorporating semi-empirical correlations for the related single- and two-phase phenomena, are used to iteratively impose balances of mass, momentum, and energy on each of the aforementioned segments, and collectively on the whole LHP. Variations of the thermophysical properties of the working fluid with temperature are taken into account, along with change in quality, pressure drop, and heat transfer in the two-phase regions, giving the proposed model enhanced capabilities compared to those of earlier thermofluid network models of LHPs. The proposed model is used to simulate an LHP for which experimental measurements are available in the literature: The predictions of the proposed model are in very good agreement with the experimental results.;In earlier quasi-one-dimensional models of LHPs, the pressure drop for vapor flow through the grooves in the evaporator is computed using a friction-factor correlation that applies strictly only in the fully-developed region of fluid flows in straight ducts with impermeable walls. This approach becomes unacceptable when this pressure drop is a significant contributor to the overall pressure drop in the LHP. A more accurate correlation for predicting this pressure drop is needed. To fulfill this need, first, a co-located equal-order control-volume finite element method (CVFEM) for predicting three-dimensional parabolic fluid flow and heat transfer in straight ducts of uniform regular- and irregular-shaped cross-section is proposed. The methodology of the proposed CVFEM is also adapted to formulate a simpler finite volume method (FVM), and this FVM is used to investigate steady, laminar, Newtonian fluid flow and heat transfer in straight vapor grooves of rectangular cross-section, for parameter ranges representative of typical LHP operating conditions. The results are used to elaborate the features of a special fully-developed flow and heat transfer region (established at a distance located sufficiently downstream from the blocked end of the groove) and to propose novel correlations for calculating the overall pressure drop and also the bulk temperature of the vapor. These correlations are incorporated in the aforementioned quasi-one-dimensional model to obtain an enhanced segmented network thermofluid model of LHPs.;Sintered porous metals of relatively low porosity (0.30 -- 0.50) and small pore diameter (2.0 -- 70 micrometers) are the preferred materials for the wick in LHPs. The required inputs to mathematical models of LHPs include the porosity, maximum effective pore size, effective permeability, and effective thermal conductivity of the liquid-saturated porous material of the wick. The determination of these properties by means of simple and effective experiments, procedures, and correlations is demonstrated using a sample porous sintered-powder-metal plate made of stainless steel 316.;Finally, the capabilities of the aforementioned enhanced segmented network thermofluid model are demonstrated by using it to simulate a sample LHP operating under steady-state conditions with four different working fluids: ammonia, distilled water, ethanol, and isopropanol. The results are presented and comparatively discussed.
机译:本文提出的工作的总体目标是建立,实现,测试和演示具有成本效益的数学模型和数值解法,用于在稳态下运行的环路热管(LHP)中的流体流动和传热的计算机模拟。提出了一种分段网络热流体模型,用于模拟传统的带圆筒形和平板式蒸发器的LHP的稳态运行。在此模型中,蒸汽传输线,冷凝器管和液体传输线被分为纵向段(或控制容积)。准一维公式结合了相关单相和两相现象的半经验相关性,用于迭代地在上述每个部分以及整个LHP上强制施加质量,动量和能量的平衡。考虑到工作流体的热物理性质随温度的变化以及两相区域中质量,压降和传热的变化,与早期的热流体网络模型相比,该模型具有增强的功能。 LHP。所提出的模型用于模拟LHP,其文献中提供了实验测量值:所模型的预测与实验结果非常吻合。在早期的准一维LHPs模型中,压降通过摩擦系数的相关性来计算通过蒸发器凹槽的蒸气的流量,该系数仅适用于具有不透水壁的直管中流体流动的充分发展区域。当此压降是LHP中总体压降的重要因素时,这种方法将变得无法接受。需要用于预测该压力下降的更准确的相关性。为了满足这一需求,首先,提出了一种用于预测三维抛物线在均匀规则和不规则形状的直管中的抛物线流动和传热的等位控制量有限元方法(CVFEM)。 。拟议的CVFEM的方法也适用于制定一种更简单的有限体积法(FVM),并且该FVM用于研究矩形截面直蒸气槽中的稳态,层流,牛顿流体流动和传热,用于参数范围代表典型的LHP运行条件。结果用于阐述特殊的充分发展的流动和传热区域(在距离凹槽的受阻端足够远的距离处建立)的特征,并提出新颖的相关性以计算总压降以及体积蒸气温度。这些相关性被合并到上述准一维模型中,以获得增强型LHP的分段网络热流体模型;孔隙率相对较低(0.30-0.50)和小孔径(2.0-70微米)的烧结多孔金属为LHP中灯芯的首选材料。 LHP数学模型所需的输入包括芯子的液体饱和多孔材料的孔隙率,最大有效孔径,有效渗透率和有效导热率。通过使用不锈钢316制成的多孔烧结粉末金属样品板,通过简单有效的实验,程序和相关性确定了这些性质。最后,证明了上述增强的分段网络热流体模型的功能通过使用它来模拟在稳态条件下使用四种不同的工作液(氨,蒸馏水,乙醇和异丙醇)运行的LHP样品。给出了结果并进行了比较讨论。

著录项

  • 作者

    Jesuthasan, Nirmalakanth.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 246 p.
  • 总页数 246
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号