首页> 外文学位 >Electron and phonon transport in nanostructured exfoliated graphene nanoplatelets and its potential in thermal energy conversion.
【24h】

Electron and phonon transport in nanostructured exfoliated graphene nanoplatelets and its potential in thermal energy conversion.

机译:纳米结构剥离石墨烯纳米片中的电子和声子传输及其在热能转化中的潜力。

获取原文
获取原文并翻译 | 示例

摘要

Graphene nanoplatelets (GNP), produced from microwave assisted thermal exfoliation of graphite intercalated compounds, possess exceptional electrical and thermal properties thanks to the well preserved conjugation in the graphene basal plane as a result of this production method. The potential of these intriguing physical properties can only be realized if these nanoparticles are assembled on a macroscopic scale. However, numerous interfaces thus created between nanoparticles could have a large impact on the physical properties of GNP based nanocomposites. This research is dedicated to the investigation of the difference of electron and phonon transport at the interfaces and how to make use of this unique distinction to nanostructure and assemble GNP for thermoelectric application which requires a high electrical to thermal conductivity ratio sigma/kappa as well as high Seebeck coefficient S of the material.;In the first part of the discussion, the effect of incorporating GNP into a polymer to improve its electrical and thermal conductivity is discussed. It is found that there are distinct property enhancements around percolation threshold in the nanocomposites originating from the different mechanisms of electron and phonon transport across the GNP/polymer interface. In order to take full advantage of the excellent in-plane physical properties of GNP, a highly ordered, highly flexible binder free GNP paper was prepared by a simple filtration technology and annealing that shows much enhanced electrical and thermal conductivity.;The second part of this research is dedicated to separation of electron and phonon transport in GNP paper by various nanostructuring techniques in order to enhance sigma/kappa ratio. In the first approach, monodispersed metal nanoparticle spacers were synthesized on the surface of GNP particles. The Au/GNP hybrid film prepared by filtration shows decoupled electron and phonon transport. As a result, the in-plane electrical conductivity increased by 70% while a 7% reduction in thermal conductivity was observed in comparison to a neat GNP paper. In the second approach, polyaniline (PANi) was synthesized by in-situ chemical oxidative polymerization in the presence of GNP where GNP served as a template for nucleation and growth of PANi. Depending on the composition and protonation ratio of PANi, sigma/kappa increased from 2.5 for neat GNP paper to 4.7 for the as-made PANi/GNP and further to 11 for the reprontonated PANi/GNP film. The optimal thermoelectric properties was achieved at a protonation of 0.2 with approximately 40wt% of PANi in the nanocomposite, reaching an electrical conductivity of 59 S/cm, a thermal conductivity of 12W/mK and a Seebeck coefficient of 33 microV/K at 300K. In the third approach, three dimensional folding of a core-shell nanostructure based on PANI/GNP paper was adopted to take advantage of the high anisotropic conduction in a GNP paper, its high flexibility and foldability, but more importantly the strong phonon scattering at the corner of the folds as compared to a much lower disruption in the electron flow.;Taken together, the ability to produce and nanostructure these inexpensive graphene nanoplatelets opens up numerous opportunities for the development of plastic thermoelectrics in the future.
机译:通过微波辅助石墨插层化合物的热剥离产生的石墨烯纳米片(GNP)具有优异的电学和热学性能,这归因于这种生产方法在石墨烯基面上的结合保留得很好。这些有趣的物理特性的潜力只有在这些纳米颗粒以宏观规模组装时才能实现。然而,由此在纳米颗粒之间产生的许多界面可能对基于GNP的纳米复合材料的物理性质具有很大的影响。这项研究致力于研究界面上电子和声子传输的差异,以及如何利用这种独特的差异来纳米结构和组装用于热电应用的GNP,这需要高电导率和σ/ kappa值,以及材料的高塞贝克系数S。在讨论的第一部分中,讨论了将GNP掺入聚合物中以改善其导电性和导热性的效果。发现在纳米复合材料的渗透阈附近有明显的性能增强,这是由于电子和声子在GNP /聚合物界面上迁移的不同机理引起的。为了充分利用GNP的出色的面内物理性能,通过简单的过滤技术和退火工艺制备了高度有序,高度柔性的无粘合剂GNP纸,该纸显示出大大提高的电导率和导热率。这项研究致力于通过各种纳米结构技术分离GNP纸中的电子和声子传输,以提高sigma / kappa比率。在第一种方法中,在GNP颗粒的表面上合成了单分散的金属纳米颗粒间隔物。通过过滤制备的Au / GNP杂化膜显示出电子和声子传输解耦。结果,与纯净的GNP纸相比,面内电导率增加了70%,而热导率减少了7%。在第二种方法中,在GNP存在下通过原位化学氧化聚合合成聚苯胺(PANi),其中GNP用作PANi成核和生长的模板。取决于PANi的组成和质子化率,西格玛/κ从纯净GNP纸的2.5增加到原样PANi / GNP的4.7,再到覆膜PANi / GNP膜增加到11。在质子数为0.2的情况下,纳米复合材料中的PANi约为40wt%,获得了最佳的热电性能,在300K时达到59 S / cm的电导率,12W / mK的热导率和33 microV / K的塞贝克系数。在第三种方法中,采用了基于PANI / GNP纸的核-壳纳米结构的三维折叠,以利用GNP纸中的高各向异性传导,其高柔韧性和可折叠性,但更重要的是,在PNP / GNP纸上强声子散射相比较而言,电子流的破坏程度要低得多。综上所述,这些廉价的石墨烯纳米片的生产和纳米结构化能力为未来塑料热电学的发展提供了许多机会。

著录项

  • 作者

    Xiang, Jinglei.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号