首页> 外文学位 >Nanonet-based materials for advanced energy storage.
【24h】

Nanonet-based materials for advanced energy storage.

机译:基于纳米网的材料,用于高级能量存储。

获取原文
获取原文并翻译 | 示例

摘要

When their electrodes are made of nanomaterials or materials with nanoscale features, devices for energy conversion and energy storage often exhibit new and improved properties. One of the main challenges in material science, however, is to synthesize these nanomaterials with designed functionality in a predictable way. This thesis presents our successes in synthesizing TiSi2 nanostructures with various complexities using a chemical vapor deposition (CVD) method. Attention has been given to understanding the chemistry guiding the growth. The governing factor was found to be the surface energy differences between various crystal planes of orthorhombic TiSi2 (C54 and C49). This understanding has allowed us to control the growth morphologies and to obtain one-dimensional (1D) nanowires, two-dimensional (2D) nanonets and three-dimensional (3D) complexes with rational designs by tuning the chemical reactions between precursors. Among all these morphologies, the 2D nanonet, which is micrometers wide and long but only approximately 15 nm thick, has attracted great interest because it is connected by simple nanostructures with single-crystalline junctions. It offers better mechanical strength and superior charge transport while preserving unique properties associated with the small-dimension nanostructure, which opens up the opportunity to use it for various energy related applications. In this thesis we focus on its applications in lithium ion batteries. With a unique heteronanostructure consisting of 2D TiSi2 nanonets and active material coating, we demonstrate the performances of both anode and cathode of lithium ion batteries can be highly improved. For anode, Si nanoparticles are deposited as the coating and at a charge/discharge rate of 8400 mA/g, we measure specific capacities >1000 mAh/g with only an average of 0.1% decay per cycle over 100 cycles. For cathode, V2O5 is employed as an example. The TiSi2/V2O5 nanostructures exhibit a specific capacity of 350 mAh/g, a power rate up to 14.5 kW/kg, and 78.7% capacity retention after 9800 cycles. In addition, TiSi 2 nanonet itself is found to be a good anode material due to the special layer-structure of C49 crystals.
机译:当它们的电极由纳米材料或具有纳米级特征的材料制成时,用于能量转换和能量存储的设备通常表现出新的和改进的特性。然而,材料科学中的主要挑战之一是以可预测的方式合成具有设计功能的纳米材料。本文介绍了我们使用化学气相沉积(CVD)方法合成具有各种复杂性的TiSi2纳米结构的成功经验。人们已经注意理解指导生长的化学反应。发现控制因素是正交晶TiSi2(C54和C49)的各种晶面之间的表面能差。这种理解使我们能够控制生长形态,并通过调整前体之间的化学反应,以合理的设计获得一维(1D)纳米线,二维(2D)纳米网和三维(3D)络合物。在所有这些形态中,宽度为微米且长而仅约15 nm的2D纳米网引起了极大的兴趣,因为它是通过具有单晶结的简单纳米结构连接的。它提供了更好的机械强度和出色的电荷传输能力,同时保留了与小尺寸纳米结构相关的独特性能,这为将其用于各种能源相关应用提供了机会。本文主要研究其在锂离子电池中的应用。借助由二维TiSi2纳米网和活性材料涂层组成的独特异质结构,我们证明锂离子电池的正极和负极性能都可以得到极大提高。对于阳极,Si纳米颗粒作为涂层沉积,充电/放电速率为8400 mA / g,我们测量的比容量> 1000 mAh / g,在100个循环中,每个循环的平均衰减仅为0.1%。对于阴极,以V 2 O 5为例。 TiSi2 / V2O5纳米结构的比容量为350 mAh / g,功率速率高达14.5 kW / kg,在9800次循环后的容量保持率为78.7%。此外,由于C49晶体的特殊层结构,发现TiSi 2纳米网本身是一种很好的阳极材料。

著录项

  • 作者

    Zhou, Sa.;

  • 作者单位

    Boston College.;

  • 授予单位 Boston College.;
  • 学科 Chemistry Inorganic.;Engineering Materials Science.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号