首页> 外文学位 >Biological approaches to synthesis and assembly of semiconductor and metallic nanomaterials.
【24h】

Biological approaches to synthesis and assembly of semiconductor and metallic nanomaterials.

机译:半导体和金属纳米材料的合成和组装的生物方法。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this work is to use proteins, viruses, and whole organisms to direct the growth and assembly of semiconductor and metallic materials. The motivation for this work was to find a new way to build inorganic materials and devices with greater ease, more precise control, and smaller features than is possible with current synthetic methods.; A biological method to efficiently synthesize large quantities of cadmium sulfide nanocrystals in the bacteria E. coli was discovered. The physical properties of the nanocrystals were characterized by electron microscopy and photoluminescence spectroscopy. Next, the genetic and physiological parameters that play a role in the synthesis of cellular nanocrystals were explored. In particular, a strain and growth phase dependence for E. coli nanocrystal formation was determined, indicating that the capacity for nanocrystal synthesis in E. coli is intrinsic and can be genetically controlled. This result is a first step towards understanding this mechanism of biologically-encoded nanomaterial synthesis, and it suggests the possibility of genetically engineering E. coli to produce nanocrystals with precise control over composition, size, and crystal type.; Recently, it was discovered that filamentous viruses can be genetically engineered to direct the formation of semiconductor and magnetic nanowires. To follow-up on this project, a method for precisely directing the assembly of the viruses was developed. In order to begin ordering the viruses, the viral coat proteins were engineered to display a type of protein domain, called a leucine zipper, which can form non-covalent dimeric, trimeric, or tetrameric interactions with other leucine zippers. The leucine zipper, attached at the ends of the virus, caused individual viruses to adhere to each other end-to-end, producing one- and two-dimensional arrays. This method was also shown to be an effective way to alternate assembly of different types of viruses. By controlling the placement of the virus-templated nanowires from the bottom-up, the nanowires might become technologically useful for applications that require precise ordering, such as electronic and photonic circuits, sensors, or liquid crystal displays.
机译:这项工作的目的是利用蛋白质,病毒和整个生物体来指导半导体和金属材料的生长和组装。这项工作的动机是找到一种比目前的合成方法更容易,更精确的控制和更小的特征的无机材料和装置的制造新方法。发现了一种有效地在细菌大肠杆菌中合成大量硫化镉纳米晶体的生物学方法。通过电子显微镜和光致发光光谱表征了纳米晶体的物理性质。接下来,探索了在细胞纳米晶体合成中起作用的遗传和生理参数。特别地,确定了大肠杆菌纳米晶体形成的应变和生长阶段依赖性,这表明大肠杆菌中纳米晶体合成的能力是固有的并且可以被遗传控制。该结果是迈向了解生物编码的纳米材料合成机理的第一步,它表明对大肠杆菌进行基因工程改造以生产对组成,尺寸和晶体类型具有精确控制的纳米晶体的可能性。最近,发现丝状病毒可以被基因工程化以指导半导体和磁性纳米线的形成。为了跟进该项目,开发了一种精确指导病毒组装的方法。为了开始订购病毒,对病毒外壳蛋白进行了工程改造,以显示一种称为亮氨酸拉链的蛋白质结构域,它可以与其他亮氨酸拉链形成非共价的二聚体,三聚体或四聚体相互作用。附着在病毒末端的亮氨酸拉链导致个别病毒首尾相连,从而产生一维和二维阵列。还显示了该方法是交替组装不同类型病毒的有效方法。通过从下至上控制病毒模板化的纳米线的位置,纳米线对于需要精确排序的应用(例如电子和光子电路,传感器或液晶显示器)可能在技术上变得有用。

著录项

  • 作者

    Sweeney, Rozamond Yvonne.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Biology Molecular.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号