首页> 外文学位 >Kernel based machine learning framework for neural decoding.
【24h】

Kernel based machine learning framework for neural decoding.

机译:用于神经解码的基于内核的机器学习框架。

获取原文
获取原文并翻译 | 示例

摘要

Brain machine interfaces (BMI) have attracted intensive attention as a promising technology to aid disabled humans. However, the neural system is highly distributed, dynamic and complex system containing millions of neurons that are functionally interconnected. How to best interface the neural system with human engineeried technology is a critical and challenging problem. These issues motivate our research in neural decoding that is a significant step to realize useful BMI. In this dissertation, we aim to design a kernel-based machine learning framework to address a set of challenges in characterizing neural activity, decoding the information of sensory or behavioral states and controlling neural spatiotemporal patterns.;Secondly, the precise control of the firing pattern in a population of neurons via applied electrical stimulation is a challenge due to the sparseness of spiking responses and neural system plasticity. In this work, we propose a multiple-input-multiple-output (MIMO) adaptive inverse control scheme that operates on spike trains in a RKHS. The control scheme uses an inverse controller to approximate the neural circuit's inverse. The proposed control system takes advantage of the precise timing of the neural events using the Schoenberg kernel based decoding methodology we proposed before. During operation, the adaptation of the controller minimizes a difference defined in the spike train RKHS between the system output and the target response and keeps the inverse controller close to the inverse of the current neural circuit, which enables adapting to neural perturbations. The results on a realistic synthetic neural circuit show that the inverse controller based on the Schoenberg kernel can successfully drive the elicited responses close to the original target responses even when significant perturbations occur.;Thirdly, the spike train variability causes fluctuations in the neural decoder. Local field potentials (LFPs) are an alternate manifestations of neural activity with a more common continuous amplitude representation and longer spatiotemporal scales that can be recorded simultaneously from the same electrode array and contain complementary information about stimuli or behavior. We propose a tensor product kernel based decoder for multiscale neural activity, which allows modeling the sample from different sources individually and mapping them onto the same RKHS defined by the tensor product of the individual kernels for each source. A single linear model is adapted as done before to identify the nonlinear mapping from the multiscale neural responses to the stimuli. It enables us decoding of more complete and accurate information from heterogeneous multiscale neural activity with only with an implicit assumption of independence on their relationship. The decoding results in the rat sensory stimulation experiment show that the decoder outperforms the decoders with either single-type neural activities. In addition the multiscale decoding methodology is also used in the adaptive inverse control mode. Due to the accuracy and robustness of the decoder, the control diagram with open-loop mode is applied to control the spatiotemporal pattern of neural response in the rat somatosensory cortex with micro-stimulation in order to emulate the tactile sensation and obtained promising results.;Finally, we quantify and comparatively validate the temporal functional connectivity between neurons by measuring the statistical dependence between their firing patterns. Temporal functional connectivity provides a quantifiable representation of the transient joint information of multi-channel neural activity, which is important to completely characterize the neural state but is normally overlooked in the temporal decoding due to its complexity. The functional connectivity pattern is represented by a graph/matrix, which is again not a conventional input for machine learning algorithms. Therefore, we propose two approaches to decode the stimulation information from the neural assembly pattern. One is to use graph theory to extract topology feature vector as the model input, which makes conventional machine learning approach applicable but dismisses the information of structural details. Therefore, we also proposed a matrix kernel that is able to map the connectivity matrix into RKHS and enable kernel based machine learning approaches directly to operate on the connectivity matrix, which bypasses the information reduction induced by the feature extraction.;Our contributions can be summarized as follows. First, we propose a nonlinear adaptive spike train decoder based on the kernel least mean square (KLMS) algorithm applied directly on the space of spike trains. Instead of using a binned representation of spike trains, we transform the vector of spike times into a function in reproducing kernel Hilbert space (RKHS), where the inner product of two sets of spike times is defined by the Schoenberg kernel, which encapsulates the statistical description of the point process that generates the spike trains, and bypasses the curse of dimensionality-resolution of the other spike representations. The simulation results indicate that our decoder has advantages in both computation time and accuracy, when the application requires fine time resolution.
机译:脑机接口(BMI)作为一种有前途的技术可以帮助残疾人士,引起了广泛的关注。但是,神经系统是高度分布式,动态且复杂的系统,其中包含数百万个功能互连的神经元。如何最好地将神经系统与人类工程技术对接是一个至关重要的挑战性问题。这些问题激发了我们在神经解码方面的研究,这是实现有用的BMI的重要一步。本文旨在设计一种基于内核的机器学习框架,以解决在表征神经活动,解码感官或行为状态信息以及控制神经时空模式方面的一系列挑战。其次,对射击模式的精确控制由于尖峰反应的稀疏性和神经系统可塑性的影响,通过施加电刺激在神经元群体中的应用是一个挑战。在这项工作中,我们提出了一种多输入多输出(MIMO)自适应逆控制方案,该方案可在RKHS的峰值序列上运行。该控制方案使用逆控制器来近似神经电路的逆。所提出的控制系统利用我们之前提出的基于Schoenberg核的解码方法来利用神经事件的精确定时。在操作过程中,控制器的自适应可将系统输出与目标响应之间的尖峰序列RKHS中定义的差异最小化,并使逆控制器保持与当前神经电路的逆接近,从而能够适应神经微扰。在真实的合成神经电路上的结果表明,即使在发生显着扰动的情况下,基于Schoenberg内核的逆控制器也可以成功地将所引起的响应驱动为接近原始目标响应。第三,尖峰序列的可变性会导致神经解码器发生波动。局部电场电势(LFP)是神经活动的另一种表现形式,具有更常见的连续振幅表示和更长的时空尺度,可以同时从同一电极阵列记录并包含有关刺激或行为的补充信息。我们提出了一种基于张量积核的解码器,用于多尺度神经活动,该解码器允许对来自不同来源的样本进行单独建模,并将其映射到由每个来源的各个内核的张量积定义的同一RKHS上。如之前所做的那样,对单个线性模型进行调整,以识别从多尺度神经响应到刺激的非线性映射。它使我们能够从异质多尺度神经活动中解码更完整和准确的信息,而仅隐含假设它们之间关系的独立性。在大鼠感觉刺激实验中的解码结果表明,无论是单一类型的神经活动,解码器都优于解码器。另外,在自适应逆控制模式中也使用了多尺度解码方法。由于解码器的准确性和鲁棒性,采用开环模式的控制图通过微刺激来控制大鼠体感皮层中神经反应的时空模式,以模拟触觉并获得可喜的结果。最后,我们通过测量神经元放电模式之间的统计依赖性来量化和比较验证神经元之间的时间功能连接性。时间功能连接性提供了多通道神经活动的瞬时关节信息的量化表示,这对于完全表征神经状态很重要,但由于其复杂性,在时间解码中通常被忽略。功能连通性模式由图形/矩阵表示,这也不是机器学习算法的常规输入。因此,我们提出了两种方法来从神经装配模式中解码刺激信息。一种是使用图论提取拓扑特征向量作为模型输入,这使得传统的机器学习方法适用,但忽略了结构细节信息。因此,我们还提出了一种矩阵核,该核能够将连通性矩阵映射到RKHS中,并使基于核的机器学习方法能够直接在连通性矩阵上运行,从而绕开了特征提取所导致的信息约简。如下。首先,我们提出了一种基于核最小均方(KLMS)算法的非线性自适应尖峰序列解码器,该算法直接应用于尖峰序列的空间。我们不使用峰值信号列的二进制表示,而是将峰值时间向量转换为再现内核希尔伯特空间(RKHS)的函数,其中两个峰值时间集的内积由Schoenberg内核定义,它封装了生成尖峰序列的点过程的统计描述,并绕过了其他尖峰表示形式的维数分辨率的诅咒。仿真结果表明,当应用需要精细的时间分辨率时,我们的解码器在计算时间和准确性上均具有优势。

著录项

  • 作者

    Li, Lin.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.;Engineering General.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号