首页> 外文学位 >Video-Rate Fluorescence Molecular Tomography for Hand-held and Multimodal Molecular Imaging.
【24h】

Video-Rate Fluorescence Molecular Tomography for Hand-held and Multimodal Molecular Imaging.

机译:手持式和多峰分子成像的视频速率荧光分子层析成像。

获取原文
获取原文并翻译 | 示例

摘要

In the United States, cancer is the second leading cause of death following heart disease. Although, a variety of treatment regimens are available, cancer management is complicated by the complexity of the disease and the variability, between people, of disease progression and response to therapy. Therefore, advancements in the methods and technologies for cancer diagnosis, prognosis and therapeutic monitoring are critical to improving the treatment of cancer patients.;The development of improved imaging methods for early diagnosis of cancer and of near real-time monitoring of tumor response to therapy may improve outcomes as well as the quality of life of cancer patients. In the last decade, imaging methods including ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), have revolutionized oncology. More recently optical techniques, that have access to unique molecular reporting strategies and functional contrasts, show promise for oncologic imaging.;This dissertation focuses on the development and optimization of a fiber-based, video-rate fluorescence molecular tomography (FMT) instrument. Concurrent acquisition of fluorescence and reference signals allowed the efficient generation of ratio-metric data for 3D image reconstruction. Accurate depth localization and high sensitivity to fluorescent targets were established to depths of >10 mm. In vivo accumulation of indocyanine green dye was imaged in the region of the sentinel lymph node (SLN) following intradermal injection into the forepaw of rats. These results suggest that video-rate FMT has potential as a clinical tool for noninvasive mapping of SLN.;Spatial and temporal co-registration of nuclear and optical images can enable the fusion of the information from these complementary molecular imaging modalities. A critical challenge is in integrating the optical and nuclear imaging hardware. Flexible fiber-based FMT systems provide a viable solution. The various imaging bore sizes of small animal nuclear imaging systems can potentially accommodate the FMT fiber imaging arrays. In addition FMT imaging facilitates co-registering the nuclear and optical contrasts in time. In this dissertation, the feasibility of integrating the fiber-based, video-rate FMT system with a commercial preclinical NanoSPECT/CT platform was established. Feasibility of in vivo imaging is demonstrated by tracking a monomolecular multimodal-imaging agent (MOMIA) during transport from the forepaw to the axillary lymph nodes region of a rat. These co-registered FMT/SPECT/CT imaging results with MOMIAs may facilitate the development of the next generation preclinical and clinical multimodal optical-nuclear platforms for a broad array of imaging applications, and help elucidate the underlying biological processes relevant to cancer diagnosis and therapy monitoring.;Finally, I demonstrated that video-rate FMT is sufficiently fast to enable imaging of cardiac, respiratory and pharmacokinetic induced dynamic fluorescent signals. From these measurements, the image-derived input function and the real-time uptake of injected agents can be deduced for pharmacokinetic analysis of fluorescing agents. In a study comparing normal mice against mice liver disease, we developed anatomically guided dynamic FMT in conjunction with tracer kinetic modeling to quantify uptake rates of fluorescing agents.;This work establishes fiber-based, video-rate FMT system as a practical and powerful tool that is well suited to a broad array of potential imaging applications, ranging from early disease detection, quantifying physiology and monitoring progression of disease and therapies.
机译:在美国,癌症是仅次于心脏病的第二大死亡原因。尽管有多种治疗方案可供使用,但癌症的复杂性因疾病的复杂性以及人与人之间疾病进展和对治疗的反应的可变性而变得复杂。因此,癌症诊断,预后和治疗监测的方法和技术的进步对于改善癌症患者的治疗至关重要。改进的成像方法用于癌症的早期诊断和近实时监测肿瘤对治疗反应的发展可以改善癌症患者的预后以及生活质量。在过去的十年中,包括超声,计算机断层扫描(CT),磁共振成像(MRI),单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET)在内的成像方法已经彻底改变了肿瘤学。最新的光学技术获得了独特的分子报告策略和功能对比,在肿瘤成像中显示出了广阔的前景。本论文的重点是基于光纤的视频速率荧光分子层析成像(FMT)仪器的开发和优化。荧光和参考信号的并发采集允许有效地生成比率度量数据以进行3D图像重建。准确的深度定位和对荧光目标的高灵敏度已建立到> 10 mm的深度。皮内注射入大鼠前额后,吲哚菁绿染料在体内的积累在前哨淋巴结(SLN)区域成像。这些结果表明视频速率的FMT作为SLN的非侵入性标测的临床工具具有潜力。核和光学图像的时空共配准可以融合来自这些互补分子成像方式的信息。关键挑战在于集成光学和核成像硬件。基于光纤的灵活FMT系统提供了可行的解决方案。小型动物核成像系统的各种成像孔径可以潜在地容纳FMT光纤成像阵列。此外,FMT成像有助于及时共存核和光学对比。本文建立了将基于光纤的视频速率FMT系统与临床前的NanoSPECT / CT平台集成的可行性。体内成像的可行性通过跟踪从大鼠前爪到腋窝淋巴结区域的运输过程中的单分子多峰成像剂(MOMIA)来证明。这些与MOMIA共同注册的FMT / SPECT / CT成像结果可能有助于为广泛的成像应用开发下一代临床前和临床多峰光学核平台,并有助于阐明与癌症诊断和治疗相关的潜在生物学过程最后,我证明了视频速率FMT足够快,可以对心脏,呼吸和药代动力学诱发的动态荧光信号进行成像。从这些测量中,可以推导图像衍生的输入函数和注射剂的实时摄取,以用于荧光剂的药代动力学分析。在一项将正常小鼠与小鼠肝脏疾病进行比较的研究中,我们开发了解剖学指导的动态FMT与示踪剂动力学模型相结合以量化荧光剂的摄取率。;这项工作建立了基于纤维的视频速率FMT系统,是一种实用而强大的工具非常适合广泛的潜在成像应用,从早期疾病检测,定量生理学以及监测疾病和疗法的进展。

著录项

  • 作者

    Solomon, Metasebya.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号