首页> 外文学位 >[FeFe]-hydrogenase substrate transport mechanisms and investigation of algal hydrogen metabolism.
【24h】

[FeFe]-hydrogenase substrate transport mechanisms and investigation of algal hydrogen metabolism.

机译:[FeFe]-加氢酶底物的转运机制及藻类氢代谢的研究。

获取原文
获取原文并翻译 | 示例

摘要

The global population has recently exceeded 7 billion people and the demand for energy continues to expand as the number of industrialized countries grows. Currently, the energy economy is dominated by the utilization of polluting and non-renewable fossil fuels. Both the collection and use of petroleum-based fuels is destructive to the environment and is not sustainable over a long time-scale, which justifies the investigation into the development of renewable, alternative fuels. Of the various fuels that have been proposed, molecular hydrogen (H2) in particular holds great promise as a clean-burning fuel capable of supplementing the current energy economy, especially as the combustion of H2 generates only water vapor as by-product. H 2 can be generated via a number of chemical processes, but current H 2 technologies either require fossil fuels as inputs or are energy-inefficient. The biological production of H2, however, has garnered a great deal of interest because microorganisms are able to drive H2 synthesis using energy derived from both light and dark fermentative metabolisms. This manner of production does not depend on mining non-renewable resources and microbes can be cultured at the industrial scale without competing with arable land needed for agriculture.;H2 evolution in these microorganisms is dependent on nitrogenases and/or hydrogenases, enzymes which utilize unique metal centers for catalysis. Hydrogenases have been of particular interest for industrial-scale H 2 production because these enzymes are found in a diverse array of organisms and require only protons and electrons as substrates. In particular, [FeFe]-hydrogenases have very high turnover numbers and catalysis can be coupled to photosynthesis. Unfortunately, these enzymes are inactivated by molecular oxygen (O2 ), and a number of studies have therefore attempted to engineer O 2-tolerant hydrogenases. However, engineering enzymes to introduce optimal qualities has been impeded by an incomplete understanding of the overall reaction mechanism.;Substrate (protons, electrons, and H2) transport is essential to hydrogenase activity, yet relatively little information is available regarding the intraprotein transport of substrate in [FeFe]-hydrogenase. I focused my investigation on identifying and testing pathways important for substrate transport between the enzyme surface and the active site in the Clostridium pasteurianum [FeFe]-hydrogenase. I have elucidated a key pathway for proton transport and confirmed that two iron-sulfur clusters are essential in an electron transfer relay, contributing to the overall characterization of [FeFe]-hydrogenase activity.;Green algae utilize [FeFe]-hydrogenases to catalyze H2 production using reducing equivalents derived from photosynthesis and these enzymes are an integral component of anaerobic metabolism in these microalgae. I explored the H2 production capabilities of a multicellular green alga, Volvox carteri, and characterized two hydrogenases likely responsible for this activity. In addition, a unique hydrogenase gene cluster discovered within the Volvox carteri genome provided interesting hints into the origin of [FeFe]-hydrogenase in green algae.
机译:最近,全球人口已超过70亿,并且随着工业化国家数量的增长,对能源的需求持续增长。当前,能源经济以污染和不可再生的化石燃料的利用为主导。石油基燃料的收集和使用都对环境具有破坏性,并且长期不可持续,这证明了对可再生替代燃料的开发进行研究的合理性。在已经提出的各种燃料中,分子氢(H2)作为能够补充当前能源经济性的清洁燃烧燃料特别有广阔的前景,特别是因为H2的燃烧仅产生水蒸气作为副产物。 H 2可以通过许多化学过程生成,但是当前的H 2技术要么需要矿物燃料作为输入,要么是能源效率低的。然而,由于微生物能够利用源自光和暗发酵代谢的能量来驱动H2的合成,因此H2的生物生产引起了极大的兴趣。这种生产方式不依赖于开采不可再生资源,并且可以在不与农业所需耕地竞争的情况下以工业规模进行微生物培养。;这些微生物中的H2进化取决于氮酶和/或氢酶,这些酶利用独特的酶。金属催化中心。氢化酶对于工业规模的H 2生产特别感兴趣,因为这些酶存在于各种各样的生物中,仅需要质子和电子作为底物。特别地,[FeFe]-氢化酶具有非常高的周转次数,并且催化可以与光合作用耦合。不幸的是,这些酶被分子氧(O2)灭活,因此许多研究试图设计O 2耐受的氢酶。但是,由于对酶的整体反应机理了解不足,工程酶无法引入最佳质量。;底物(质子,电子和H2)的转运对于氢化酶活性至关重要,但是关于底物的蛋白内转运的信息相对较少在[FeFe]-加氢酶中。我将研究重点放在确定和测试对酶表面与巴氏梭菌[FeFe]-氢化酶中的活​​性位点之间的底物转运重要的途径上。我已经阐明了质子运输的关键途径,并证实了两个铁-硫簇在电子转移中继中必不可少,这有助于[FeFe]-加氢酶活性的总体表征。绿藻利用[FeFe]-加氢酶催化H2使用源自光合作用的还原当量进行生产,这些酶是这些微藻中厌氧代谢的组成部分。我探索了多细胞绿藻Volvox Carteri的H2生产能力,并描述了两种可能对此活动负责的氢化酶。此外,在Volvox Carteri基因组中发现的独特的氢化酶基因簇为绿藻[FeFe]-氢化酶的起源提供了有趣的提示。

著录项

  • 作者

    Cornish, Adam.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号