首页> 外文学位 >The immunoimmobilization of living bacteria on solid surfaces and its applications.
【24h】

The immunoimmobilization of living bacteria on solid surfaces and its applications.

机译:将活菌免疫固定在固体表面上及其应用。

获取原文
获取原文并翻译 | 示例

摘要

This thesis focuses on immobilizing living bacteria on material surfaces in their physiological environment without jeopardizing cell viability or replication. The ability to immobilize an individual bacterium opens up new research frontiers, as it not only enables us to conduct fundamental research on an individual living bacterium but also creates new opportunities for biosensor applications. A number of pathogenic organisms from Salmonella enterica and Escherichia coli strains are used to develop bacterial immobilization, herein referred to as immunoimmobilization. Our findings suggest that the most efficient, specific and reliable immunoimmobilization hinges on the use of affinity-purified antibodies raised against bacterial surface antigens such as fimbriae, lipopolysaccharides, and flagella. This approach produces a full monolayer of densely packed living bacteria (limited only by steric hindrance) on an antibody-activated area on a flat surface. Immunoimmobilization does not influence the viability or cell replication of the bacteria. To the best of our knowledge, to this day this is the highest packing density of immobilized bacteria reported in the literature. For successful immobilization, a monolayer of antibodies with full freedom of motion must be covalently linked to a flat surface (typically a silicon wafer). This has been achieved through a carefully optimized series of chemical reactions. More importantly, it was essential to monitor the activated surface using surface-sensitive analytical techniques to verify each step of the linker chemistry.;A new technique was developed for quantifying the initial rate of cell capture in terms of the number of bacteria immobilized per unit time per unit area per cell concentration in the physiological environment of the bacteria. This rate turned out to be (7.2 +/- 0.3) x 10 -6 cells/(min·(100 mum)2)/(cells/mL) for S. Typhimurium, and (1.1 +/- 0.1) x 10 -6 cells/(min·(100 mum)2)/(cells/mL) for E. coli, both expressing fimbriae. The lowest detection limit was ∼3 x 104 cells/mL in 30 minutes of incubation.;For the first time, immunoimmobilization studies were conducted in a number of Navy fuels, including biofuels. It was discovered that antibodies subjected to the fuel environment preserve their structure, functionality and stability. The immunoimmobilization process works as efficiently in fuels as in aqueous environments.
机译:本论文的重点是将活细菌固定在其生理环境中的物质表面上,而不损害细胞的生存能力或复制能力。固定单个细菌的能力开辟了新的研究领域,因为它不仅使我们能够对单个活细菌进行基础研究,而且为生物传感器的应用创造了新的机会。来自肠沙门氏菌和大肠杆菌菌株的许多致病生物被用于发展细菌固定化,在本文中称为免疫固定化。我们的发现表明,最有效,特异性和可靠的免疫固定取决于对细菌表面抗原(如菌毛,脂多糖和鞭毛)产生的亲和纯化抗体的使用。这种方法在平坦表面的抗体激活区域上产生了一个完整的单层致密堆积的活细菌(仅受位阻限制)。免疫固定不影响细菌的生存力或细胞复制。据我们所知,迄今为止,这是文献中报道的固定细菌的最高堆积密度。为了成功固定,必须将具有完全运动自由度的抗体单层共价连接到平坦表面(通常是硅晶片)上。这是通过精心优化的一系列化学反应来实现的。更重要的是,必须使用表面敏感的分析技术来监测活化的表面,以验证接头化学过程的每个步骤。;开发了一种新技术,用于根据每单位固定的细菌数量来量化细胞捕获的初始速率。细菌生理环境中每细胞浓度每单位面积的时间。鼠伤寒沙门氏菌的速率为(7.2 +/- 0.3)x 10 -6个细胞/(min·(100 mum)2)/(cells / mL),和(1.1 +/- 0.1)x 10-大肠杆菌均表达6个细胞/(min·(100 mum)2)/(细胞/ mL),均表达菌毛。孵育30分钟的最低检出限为约3 x 104细胞/ mL。;首次对包括生物燃料在内的多种海军燃料进行了免疫固定化研究。已经发现,经受燃料环境的抗体保留了其结构,功能和稳定性。免疫固定过程在燃料中的效率与在水性环境中一样有效。

著录项

  • 作者

    Deliorman, Muhammedin.;

  • 作者单位

    Montana State University.;

  • 授予单位 Montana State University.;
  • 学科 Physics General.;Biology Microbiology.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号