首页> 外文学位 >Insights into the G-protein coupled receptor pathway of Tetrahymena thermophila.
【24h】

Insights into the G-protein coupled receptor pathway of Tetrahymena thermophila.

机译:洞悉四膜虫的G蛋白偶联受体途径。

获取原文
获取原文并翻译 | 示例

摘要

Tetrahymena thermophila is a model organism for cellular chemosensory research. Many chemical signals such as chemoattractants, chemorepellents, and neurotransmitters are detected by G-protein coupled receptors (GPCRs) on eukaryotic cells. It appears that this receptor family is present to varying extents throughout the majority of eukaryotic life and shares at least a common eukaryotic ancestor. How the many different branches of the eukaryotic evolutionary tree utilize these molecular tools is still unknown. Although the Tetrahymena genome possesses GPCR genes and associated signal transduction effectors, there have been no reports of any complete receptor system (ligand->receptor->downstream effects) in the ciliates.;The chemosensory molecule lysophosphatidic acid (LPA) and a macronuclear knockout mutation of GPCR6 in Tetrahymena have provided an opportunity to study the putative ciliate GPCR system. LPA is a novel Tetrahymena chemoattractant and provides responses comparable to the strongest known attractant, proteose peptone (PP), in specific assays. Both pertussis toxin (PTX) treatment and the GPCR6 knockout show a reduced response to both of these chemoattractants. In addition, the toxin treated and GPCR6 knockout cells have decreased basal percent directional changes (PDC) and duration of backwards swimming in Ba2+. This suggests regulation of voltage-dependent Ca2+ channels by PTX and Gpcr6p. Decreased Ca2+ conductance results in the decreased PDC. This leads to the cell's inability to further alter their turning frequency to orient themselves towards an attractant. As PTX and the GPCR6 mutation do not alter swim speed, PDC appears to be the important factor in Tetrahymena chemoattraction. As these responses occur in buffer without addition of known potential GPCR ligands a PTX sensitive constitutive Gpcr6p signal may be present. [35S]GTPgammaS binding to microsomes have provided further support for this constitutive Gpcr6p, PTX sensitive G-protein activity. LPA decreases the same G-protein activity suggesting that it may act as an inverse agonist to the Gpcr6p pathway to elicit chemoattraction.;To help illuminate further downstream signaling a classical GPCR effector gene, Gbeta (GB1), has been annotated in the Tetrahymena genome and a knockout mutation has been created. The hypothesis was that Gbeta would be downstream of Gpcr6p and would completely phenocopy the GPCR6 knockout. The final results have not provided us with a clear answer to this hypothesis. Some of the phenotypes, like a decrease chemoattraction response are similar to the GPCR6 knockout. But, overall the GPCR6 knockout's altered phenotype is far greater than that of the GB1 knockout. In addition, the Gbeta knockout had a of decreased swim speed and unlike G6 cells the GB cells' phenotypes were rescued by IBMX treatment. This observation places some of Gb1p protein's function outside of the Gpcr6p/PTX pathway. cAMP has been shown to be an important part of the swim speed regulation in ciliates but its exact role remains unknown. The GB1 knockout shows a decreased level of basal cAMP which would explain the decrease in swim speed. With the identification of possible functions for both a GPCR and a heterotrimeric G-protein the stage is set for in depth analysis of the GPCR family in Tetrahymena.
机译:嗜热四膜菌是用于细胞化学感觉研究的模型生物。真核细胞上的G蛋白偶联受体(GPCR)可检测到许多化学信号,例如趋化剂,化学趋化剂和神经递质。似乎该受体家族在整个真核生物生命中以不同程度存在,并且至少具有一个共同的真核祖先。真核生物进化树的许多不同分支如何利用这些分子工具仍是未知的。尽管四膜虫基因组具有GPCR基因和相关的信号转导效应子,但尚无纤毛虫中任何完整的受体系统(配体->受体->下游效应)的报道。;化学感应分子溶血磷脂酸(LPA)和大核敲除四膜虫中GPCR6的突变为研究假定的纤毛GPCR系统提供了机会。 LPA是一种新颖的四膜虫化学吸引剂,在特定测定中提供的响应可与已知最强的引诱剂蛋白PP(PP)相媲美。百日咳毒素(PTX)处理和GPCR6敲除均显示出对这两种趋化剂的响应降低。此外,毒素处理过的细胞和GPCR6敲除细胞在Ba2 +中具有降低的基础方向改变百分比(PDC)和向后游泳的持续时间。这表明PTX和Gpcr6p可调节电压依赖性Ca2 +通道。 Ca2 +电导降低导致PDC降低。这导致细胞无法进一步改变其转向频率以使其自身朝向引诱剂。由于PTX和GPCR6突变不会改变游泳速度,因此PDC似乎是四膜虫化学引诱的重要因素。由于这些响应在缓冲液中发生而未添加已知的潜在GPCR配体,因此可能存在PTX敏感的组成型Gpcr6p信号。 [35S] GTPgammaS与微粒体的结合为该组成型Gpcr6p,PTX敏感G蛋白活性提供了进一步的支持。 LPA降低了相同的G蛋白活性,表明它可能是Gpcr6p途径的反向激动剂,以引起化学引诱作用。;为了帮助进一步阐明下游信号,在四膜虫基因组中注释了Gbeta效应基因Gbeta(GB1)。并创建了一个基因突变。假设是,Gbeta将位于Gpcr6p的下游,并将完全表型复制GPCR6敲除。最终结果并未为我们提供关于该假设的明确答案。一些表型,例如降低趋化反应,与GPCR6敲除相似。但是,总的来说,GPCR6基因敲除的表型远大于GB1基因敲除的表型。另外,Gbeta基因敲除的游泳速度降低,并且与G6细胞不同,GB细胞的表型通过IBMX处理得以挽救。该观察结果将某些Gb1p蛋白的功能置于Gpcr6p / PTX途径之外。已经证明,cAMP是纤毛虫游泳速度调节的重要组成部分,但其确切作用尚不清楚。 GB1基因敲除表明基础cAMP水平降低,这可以解释游泳速度的降低。通过鉴定出GPCR和异源三聚体G蛋白的可能功能,为深入分析四膜虫中GPCR家族奠定了基础。

著录项

  • 作者

    Lampert, Thomas J.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Biology Cell.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号