首页> 外文学位 >Ultrasonic synthesis of materials for energy conversion devices.
【24h】

Ultrasonic synthesis of materials for energy conversion devices.

机译:超声合成用于能量转换装置的材料。

获取原文
获取原文并翻译 | 示例

摘要

There is no doubt about the fact that the development of improved energy conversion and storage devices is the biggest issue in the 21st century. A variety of mobile electronics are on the market more than ever, and battery-powered electrical vehicles are no longer a dream. However, the energy conversion and storage devices are the bottleneck in technological innovation, since the materials which applied to these devices have not shifted a lot from the early 20th century; therefore, it is now essential that new economic and ecological technologies are found to synthesize better performing materials.;Nanostructured materials for a better energy conversion and storage have been a topic of interest because unique mechanical, electrical, and optical properties of materials have been observed by confining the materials nano-scaled; hence the improvement in performance of the energy conversion and storage devices. There have been proposed enormous numbers of studies regarding the synthesis routes for nanostructured materials, since materials characteristics depend very much on the applied synthetic routes. In this sense, applying ultrasound to the materials' synthesis has attracted much attention. Sonochemistry is found to be a very effective way of producing nano-sized materials with unique properties, while ultrasonic spray pyrolysis shows promising results for the mass production of the nanostructured materials.;Therefore in this dissertation, synthesis of nanostructured materials by applying ultrasound for the better performing energy conversion and storage devices, specifically supercapacitors, quantum dot sensitized solar cells, and lithium-ion batteries will be discussed in detail. For a supercapacitor application, ultrasonic spray pyrolysis has been applied to synthesize high capacitance carbon materials with high surface area and oxygen-related surface functionality, which are found to be beneficial to improve capacitance. Ultrasonic spray pyrolysis has also been applied to the synthesis of porous zinc oxide microspheres for quantum dot sensitized solar cells because ultrasonic spray pyrolysis is superior in synthesizing porous materials to other conventional synthetic routes. For a lithium-ion battery application, the effects of high intensity ultrasound to the synthesis of silicon nanoparticles have been investigated. During the research, it was found that sonochemical synthesis is capable of synthesizing silicon nanoparticles in much faster rate and the resultant particles outperformes other materials synthesized by a conventional reaction route.
机译:毫无疑问,改进的能量转换和存储设备的开发是21世纪最大的问题。市场上比以往任何时候都更多的移动电子产品,而电池供电的电动汽车不再是梦想。但是,能量转换和存储设备是技术创新的瓶颈,因为自20世纪初以来,应用于这些设备的材料并未发生太大变化。因此,必须找到新的经济和生态技术来合成性能更好的材料。纳米结构的材料用于更好的能量转换和存储已成为人们关注的话题,因为观察到材料具有独特的机械,电学和光学特性通过将材料限制在纳米级;因此提高了能量转换和存储设备的性能。由于材料特性在很大程度上取决于所应用的合成路线,因此已经提出了关于纳米结构材料的合成路线的大量研究。从这个意义上讲,将超声应用于材料的合成引起了广泛的关注。声化学是生产具有独特性能的纳米级材料的一种非常有效的方法,而超声喷雾热解法则显示出了大规模生产纳米结构材料的良好前景。将详细讨论性能更好的能量转换和存储设备,特别是超级电容器,量子点敏化太阳能电池和锂离子电池。对于超级电容器应用,超声喷雾热解已被用于合成具有高表面积和与氧有关的表面官能度的高电容碳材料,这被发现对于改善电容是有益的。超声喷雾热解还已经应用于量子点敏化太阳能电池的多孔氧化锌微球的合成,因为超声喷雾热解在合成多孔材料方面优于其他常规合成路线。对于锂离子电池应用,已经研究了高强度超声对硅纳米颗粒合成的影响。在研究过程中,发现声化学合成能够以更快的速率合成硅纳米粒子,并且所得粒子优于通过常规反应路线合成的其他材料。

著录项

  • 作者

    Kim, Ho.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Materials Science.;Energy.;Engineering General.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号