首页> 外文学位 >Modeling, Fabrication and Characterization of Scalable Electroless Gold Plated Nanostructures for Enhanced Surface Plasmon Resonance.
【24h】

Modeling, Fabrication and Characterization of Scalable Electroless Gold Plated Nanostructures for Enhanced Surface Plasmon Resonance.

机译:用于增强表面等离子体共振的可扩展化学镀金纳米结构的建模,制作和表征。

获取原文
获取原文并翻译 | 示例

摘要

The scientific and industrial demand for controllable thin gold (Au) film and Au nanostructures is increasing in many fields including opto-electronics, photovoltaics, MEMS devices, diagnostics, bio-molecular sensors, spectro-/microscopic surfaces and probes. In this study, a novel continuous flow electroless (CF-EL) Au plating method is developed to fabricate uniform Au thin films in ambient condition. The enhanced local mass transfer rate and continuous deposition resulting from CF-EL plating improved physical uniformity of deposited Au films and thermally transformed nanoparticles (NPs). Au films and NPs exhibited improved optical photoluminescence (PL) and surface plasmon resonance (SPR), respectively, relative to batch immersion EL (BI-EL) plating. Suggested mass transfer models of Au mole deposition are consistent with optical feature of CF-EL and BI-EL films.;The prototype CF-EL plating system is upgraded an automated scalable CF-EL plating system with real-time transmission UV-vis (T-UV) spectroscopy which provides the advantage of CF-EL plating, such as more uniform surface morphology, and overcomes the disadvantages of conventional EL plating, such as no continuous process and low deposition rate, using continuous process and controllable deposition rate. Throughout this work, dynamic morphological and chemical transitions during redox-driven self-assembly of Ag and Au film on silica surfaces under kinetic and equilibrium conditions are distinguished by correlating real-time T-UV spectroscopy with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The characterization suggests that four previously unrecognized time-dependent physicochemical regimes occur during consecutive EL deposition of silver (Ag) and Au onto tin-sensitized silica surfaces: self-limiting Ag activation; transitory Ag NP formation; transitional Au-Ag alloy formation during galvanic replacement of Ag by Au; and uniform morphology formation under controlled hydraulic conditions.;A method to achieve the time-resolved optical profile of EL Au plating was devised and provided a new transitional EL Au film growth model which validated mass transfer model prediction of the deposited thickness of ≤100 nm thin films. As a part of the project, validation of mass transfer model, a spectrophotometric method for quantitative analysis of metal ion is developed that improves the limit of detection comparable to conventional instrumental analysis.;The present work suggests that modeling, fabrication and characterization of this novel CF-EL plating method is performed to achieve an ultimate purpose: developing a reliable, inexpensive wet chemical process for controlled metal thin film and nanostructure fabrication.
机译:在许多领域,包括光电子,光伏,MEMS设备,诊断,生物分子传感器,光谱/微观表面和探针,对可控金(Au)薄膜和Au纳米结构的科学和工业需求正在增长。在这项研究中,开发了一种新颖的连续流化学(CF-EL)Au电镀方法,以在环境条件下制造均匀的Au薄膜。 CF-EL镀层提高的局部传质速率和连续沉积提高了沉积的Au膜和热转化纳米颗粒(NPs)的物理均匀性。相对于分批浸没EL(BI-EL)电镀,Au膜和NPs分别显示出改进的光学发光(PL)和表面等离子体共振(SPR)。建议的Au摩尔沉积传质模型与CF-EL和BI-EL薄膜的光学特性一致。;原型CF-EL电镀系统已升级为可自动扩展的CF-EL电镀系统,具有实时透射UV-vis( T-UV)光谱学提供了CF-EL镀层的优势,例如更均匀的表面形态,并克服了常规EL镀层的缺点,例如使用连续过程和可控制的沉积速率,没有连续过程且沉积速率低。在整个工作过程中,通过将实时T-UV光谱与X射线光电子能谱(XPS)关联起来,在动力学和平衡条件下,氧化还原驱动的二氧化硅和表面上的Ag和Au膜在氧化硅自组装过程中的动态形态学和化学转变得以区分。扫描电子显微镜(SEM)测量。该特征表明,在连续EL沉积银(Ag)和Au到锡敏化的二氧化硅表面上时,发生了四个以前无法识别的随时间变化的物理化学过程:自限性Ag活化;短暂的Ag NP形成;在用金电置换银的过程中过渡金-银合金的形成;设计了一种实现EL Au镀层时间分辨光学轮廓的方法,并提供了一种新的过渡EL Au膜生长模型,该模型验证了质量传递模型对沉积厚度≤100nm的预测薄膜。作为该项目的一部分,开发了传质模型验证,一种用于金属离子定量分析的分光光度法,与传统的仪器分析相比,该方法提高了检测限。;本工作表明,对该新型进行建模,制备和表征执行CF-EL电镀方法以达到最终目的:开发一种可靠,廉价的湿法化学工艺,用于受控的金属薄膜和纳米结构的制造。

著录项

  • 作者

    Jang, Gyoung Gug.;

  • 作者单位

    University of Arkansas.;

  • 授予单位 University of Arkansas.;
  • 学科 Nanotechnology.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号