首页> 外文学位 >Time-resolved Photoluminescence Studies of Point Defects in GaN.
【24h】

Time-resolved Photoluminescence Studies of Point Defects in GaN.

机译:GaN中点缺陷的时间分辨光致发光研究。

获取原文
获取原文并翻译 | 示例

摘要

Time-resolved photoluminescence (TRPL) measurements paired with steady-state photoluminescence (SSPL) measurements can help to determine the PL lifetime, shape and position of unresolved bands, capture coefficients, and concentrations of free electrons and defects. PL bands that are obscured in the SSPL spectra can be accurately revealed by TRPL measurements. TRPL measurements are able to show if the PL band originates from an internal transition between different states of the same defect. The main defect-related PL bands in high-purity GaN grown by hydride vapor phase epitaxy (HVPE) which have been investigated are the ultraviolet, blue, green, yellow and red luminescence bands (UVL, BL, GL, YL and RL, respectively). The concentration of free electrons can be calculated from these measurements providing a contactless alternative to the Hall effect method. The lifetime of most defect-related PL bands decreases with increasing temperature. However, the lifetime of the GL band, with a maximum at 2.4 eV observed in the SSPL spectra only at high excitation intensity, increases as a function of temperature. By analyzing the PL intensity decay, the origin of the GL can be attributed to an internal transition from an excited state of the CN defect, which behaves as an optically generated giant trap, to the 0/+ level of the same defect. This first observation of an optically generated giant trap was detected by analyzing the cubic temperature dependence of the electron capture coefficient. Excitation intensity and temperature dependent studies on Mg-doped GaN grown by HVPE were performed. The position of the UVL (3.2 eV) peak blue-shifts with increasing excitation intensity, which can be explained by the presence of potential fluctuations. The BL peak (2.8 eV) also blue-shifts with increasing excitation intensity, and red-shifts as a function of temperature. These shifts can be explained by the transitions originating from a deep-donor to the MgGa acceptor, and the corresponding donor-acceptor pair nature.
机译:时间分辨光致发光(TRPL)测量与稳态光致发光(SSPL)测量可以帮助确定PL寿命,未分辨带的形状和位置,捕获系数以及自由电子和缺陷的浓度。通过TRPL测量可以准确地揭示SSPL光谱中模糊的PL波段。 TRPL测量能够显示PL带是否起源于同一缺陷的不同状态之间的内部转变。已研究的氢化物气相外延(HVPE)生长的高纯度GaN中与缺陷相关的主要PL带分别是紫外,蓝,绿,黄和红色发光带(分别为UVL,BL,GL,YL和RL) )。可以从这些测量值计算出自由电子的浓度,从而提供了霍尔效应方法的非接触替代方法。大多数与缺陷相关的PL带的寿命随温度升高而降低。但是,仅在高激发强度下,在SSPL光谱中观察到的GL波段的寿命最大为2.4 eV,随温度的变化而增加。通过分析PL强度衰减,可以将GL的起源归因于从CN缺陷的激发态到内部缺陷的转变,该CN缺陷表现为光学生成的巨陷阱,而该状态的状态为光学生成的巨型陷阱。通过分析电子俘获系数的立方温度依赖性,检测到了对光学产生的巨型陷阱的首次观察。对HVPE生长的掺Mg的GaN进行了激发强度和温度依赖性研究。随着激发强度的增加,UVL(3.2 eV)峰蓝移的位置可以用电位波动的存在来解释。 BL峰(2.8 eV)还会随着激发强度的增加而蓝移,而红移随温度而变。这些变化可以通过从深供体到MgGa受体的转变以及相应的供体-受体对性质来解释。

著录项

  • 作者

    McNamara, Joy Dorene.;

  • 作者单位

    Virginia Commonwealth University.;

  • 授予单位 Virginia Commonwealth University.;
  • 学科 Condensed matter physics.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号