首页> 外文学位 >Coupling molecular catalysts with nanostructured surfaces for efficient solar fuel production.
【24h】

Coupling molecular catalysts with nanostructured surfaces for efficient solar fuel production.

机译:将分子催化剂与纳米结构表面偶联,以高效生产太阳能。

获取原文
获取原文并翻译 | 示例

摘要

Solar fuel generation via carbon dioxide (CO2) reduction is a promising approach to meet the increasing global demand for energy and to minimize the impact of energy consumption on climate change. However, CO2 is thermodynamically stable; its activation often requires the use of appropriate catalysts. In particular, molecular catalysts with well-defined structures and tunability have shown excellent activity in photochemical CO2 reduction. These homogenous catalysts, however, suffer from poor stability under photochemical conditions and difficulty in recycling from the reaction media. Heterogenized molecular catalysts, particularly those prepared by coupling molecular catalysts with solid-state surfaces, have attracted more attention in recent years as potential solutions to address the issues associated with molecular catalysts.;In this work, solar CO2 reduction is investigated using systems coupling molecular catalysts with robust nanostructured surfaces. In Chapter 2, heterogenization of macrocyclic cobalt(III) and nickel (II) complexes on mesoporous silica surface was achieved by different methods. Direct ligand derivatization significantly lowered the catalytic activity of Co(III) complex, while grafting the Co(III) complex onto silica surface through Si-O-Co linkage resulted in hybrid catalysts with excellent activity in CO2 reduction in the presence of p-terphenyl as a molecular photosensitizer. An interesting loading effect was observed, in which the optimal activity was achieved at a medium Co(III) surface density. Heterogenization of the Ni(II) complex on silica surface has also been implemented, the poor photocatalytic activity of the hybrid catalyst can be attributed to the intrinsic nature of the homogeneous analogue. This study highlighted the importance of appropriate linking strategies in preparing functional heterogenized molecular catalysts.;Coupling molecular complexes with light-harvesting surfaces could avoid the use of expensive molecular photosensitizers. In Chapter 3, effective coupling of the macrocyclic Co(III) complex with titanium dioxide (TiO¬2) nanoparticles was achieved by two deposition methods. The synthesized hybrid photocatalysts were thoroughly characterized with a variety of techniques. Upon UV light irradiation, photoexcited electrons in TiO2 nanoparticles were transferred to the surface Co(III) catalyst for CO2 reduction. Production of carbon monoxide (CO) from CO2 was confirmed by isotope labeling combined with infrared spectroscopy. Deposition of the Co(III) catalyst through Ti-O-Co linkages was essential for the photo-induced electron transfer and CO2-reduction activity using the hybrid photocatalysts.;In Chapter 4, molecular Re(I) and Co(II) catalysts were coupled with silicon-based photoelectrodes, including a silicon nanowire (SiNW) photoelectrode, to achieve photoelectrochemical CO2 reduction. Photovoltages between 300-600 mV were obtained using the molecular catalysts on the silicon photoelectrodes. SiNWs exhibited enhanced properties, including significantly higher photovoltages than a planar silicon photoelectrode, the ability to protect one of the molecular catalysts from photo-induced decomposition, and excellent selectivity towards CO production in CO2 reduction.;Recent theoretical and experimental work have demonstrated low-energy, binuclear pathways for CO2-to-CO conversion using several molecular catalysts. In such binuclear pathways, two metal centers work cooperatively to achieve two-electron CO2 reduction. Chapter 5 describes our effort to promote the binuclear pathway by grafting the molecular Co(III) catalyst onto silica surfaces. Different linking strategies were attempted to achieve this goal by planting the surface Co(III) sites in close proximity.
机译:通过减少二氧化碳(CO2)生产太阳能燃料是一种有前途的方法,可以满足不断增长的全球能源需求,并最大程度地减少能源消耗对气候变化的影响。但是,二氧化碳在热力学上是稳定的。其活化通常需要使用适当的催化剂。特别是,具有明确结构和可调性的分子催化剂在光化学CO2还原中表现出出色的活性。但是,这些均相催化剂在光化学条件下稳定性差,并且难以从反应介质再循环。异构化的分子催化剂,特别是那些通过将分子催化剂与固态表面偶联制备的分子催化剂,近年来作为解决与分子催化剂相关问题的潜在解决方案引起了越来越多的关注。具有坚固的纳米结构表面的催化剂。在第二章中,通过不同的方法实现了大孔钴(III)和镍(II)配合物在介孔二氧化硅表面的杂化。直接配体衍生化显着降低了Co(III)配合物的催化活性,同时通过Si-O-Co键将Co(III)配合物接枝到了二氧化硅表面,导致杂化催化剂在对三联苯存在下具有出色的CO2还原活性作为分子光敏剂。观察到了有趣的加载效果,其中在中等Co(III)表面密度下获得了最佳活性。 Ni(II)配合物在二氧化硅表面上的异质化也已经实现,杂化催化剂的光催化活性差可归因于均相类似物的固有性质。这项研究强调了适当的连接策略在制备功能性均相分子催化剂中的重要性。分子配合物与光捕获表面的偶联可以避免使用昂贵的分子光敏剂。在第三章中,通过两种沉积方法实现了大环Co(III)配合物与二氧化钛(TiO 2)纳米粒子的有效偶联。用多种技术对合成的杂化光催化剂进行了全面表征。在紫外线照射下,TiO2纳米颗粒中的光激发电子被转移到表面Co(III)催化剂中以还原CO2。通过同位素标记结合红外光谱法确认了由CO2产生一氧化碳(CO)。通过Ti-O-Co键沉积Co(III)催化剂对于使用杂化光催化剂进行光致电子转移和CO2还原活性至关重要。在第4章中,分子Re(I)和Co(II)催化剂将其与基于硅的光电极(包括硅纳米线(SiNW)光电极)耦合,以实现光电化学二氧化碳的还原。使用硅光电极上的分子催化剂可获得300-600 mV的光电压。 SiNW具有增强的性能,包括比平面硅光电极高得多的光电压,保护一种分子催化剂免于光诱导分解的能力以及在CO2还原中对CO产生的优良选择性。能量,使​​用几种分子催化剂的CO2-CO转化双核途径。在这种双核途径中,两个金属中心协同工作以实现双电子CO2还原。第5章介绍了我们通过将分子Co(III)催化剂接枝到二氧化硅表面上来促进双核途径的努力。尝试通过在表面附近种植Co(III)表面位点来实现此目标的不同链接策略。

著录项

  • 作者

    Jin, Tong.;

  • 作者单位

    University of New Hampshire.;

  • 授予单位 University of New Hampshire.;
  • 学科 Physical chemistry.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号