首页> 外文学位 >Stabilization of the Resistive Wall Mode and Error Field Modification by a Rotating Conducting Wall.
【24h】

Stabilization of the Resistive Wall Mode and Error Field Modification by a Rotating Conducting Wall.

机译:通过旋转导电壁稳定电阻壁模式并修改误差场。

获取原文
获取原文并翻译 | 示例

摘要

The hypothesis that the Resistive Wall Mode (RWM) can be stabilized by high-speed differentially rotating conducting walls is tested in the laboratory. A solid rotating wall capable of routine operation at speeds of 300 km/h, equivalent to a magnetic Reynolds number (Rm) of 5, was designed, assembled, and fielded. Fast wall rotation is found to decrease the RWM growth rate and increase the RWM stable operation window to higher plasma current (Ip), thus demonstrating the stabilizing effect of the wall. The interaction of the rotating wall with on-axisymmetric fields (error fields) is found to lead to asymmetries in wall rotation direction. Analytic theory is used to demonstrate that as wall rotation increases the error field is not necessarily shielded but can instead destabilize the RWM. Error fields are also found to mediate MHD mode-locking bifurcations, which are observed for the first time in a linear plasma column. A torque balance model which includes the effect of the error field, plasma rotation, and wall rotation is developed and applied to the experiment. Asymmetry in wall rotation is also found in the torque balance, with one wall rotation direction eliminating the mode-locking bifurcation. Insertable probes are used to characterize the plasma and show that the column is diamagnetic at low Ip. This diamagnetic equilibrium enables the line-tying boundary condition at the device anode to be verified. At high Ip a persistent helical state is found and reconstructed using correlation techniques. Probes also illustrate that individual flux ropes from the device's discretized plasma gun array merge to form an axisymmetric profile within a short axial distance.
机译:在实验室中测试了可以通过高速差动旋转导电壁来稳定电阻壁模式(RWM)的假设。设计,组装并投入使用的实心旋转墙能够以300 km / h的速度进行常规操作,相当于雷诺数(Rm)等于5。发现快速的壁旋转降低了RWM的生长速率,并增加了RWM的稳定操作窗口以达到更高的等离子体电流(Ip),从而证明了壁的稳定作用。发现旋转壁与轴对称场(误差场)的相互作用导致壁旋转方向上的不对称。分析理论用于证明,随着墙体旋转的增加,误差场不一定会被屏蔽,反而会使RWM不稳定。还发现了误差场来介导MHD锁模分叉,这是在线性等离子体色谱柱中首次观察到的。建立了包括误差场,等离子旋转和壁旋转影响的扭矩平衡模型,并将其应用于实验。在扭矩平衡中还发现壁旋转不对称,其中一个壁旋转方向消除了锁模分叉。可插入的探针用于表征血浆并显示该柱在低Ip时是抗磁性的。这种反磁性平衡使得能够验证器件阳极处的线束缚边界条件。在高Ip时,使用相关技术找到并重建了持久的螺旋状态。探针还显示,来自该设备离散化等离子枪阵列的各个磁通绳会合并在一起,从而在较短的轴向距离内形成轴对称轮廓。

著录项

  • 作者

    Paz-Soldan, Carlos Alberto.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Physics General.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 234 p.
  • 总页数 234
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号