首页> 外文学位 >Genetically engineered protein modules: Development and applications in anti-viral agent screening and cancer marker detection.
【24h】

Genetically engineered protein modules: Development and applications in anti-viral agent screening and cancer marker detection.

机译:基因工程蛋白质模块:在抗病毒药物筛选和癌症标志物检测中的开发和应用。

获取原文
获取原文并翻译 | 示例

摘要

One of the most critical aspects in drug discovery is the bioactivity screening assay, by which compounds that most effectively inhibit the target are identified. During the past decade, the antiviral marketplace had experienced tremendous growth and is expected to grow further as new viral targets are identified. The persistent problem of viral resistance requires developing new-generation drugs to replace the existing ones. The pharmaceutical industry faces huge cost due to the failure of promising drug candidates to pass the test of potency and safety in humans. The quest for successful antiviral drugs is further hampered by the fact that successful drugs must often enter an infected cell and neutralize the replicating virus without causing harm to the host cell. To meet these challenges, the screening assays should be representative of the in vivo setting so that the results can be interpreted, with sufficient confidence, from the viewpoint of clinical efficacy. To this end, cell-based high-throughput screening (HTS) assays are preferred since they can provide additional information on the adverse effects of the drug and transport efficiency to the target cells.;The overall objective of this thesis is to develop a genetically programmable module that is easily adaptable for screening inhibitors for a wide range of proteases. Proteases are proteolytic enzymes that catalyze the cleavage of peptide bonds. They play important role in many essential intracellular and extracellular processes such as viral infection, blood coagulation, caner development, fibrinolysis, hormone maturation, and apoptosis. These properties make proteases a prime target for detailed investigation in order for better understanding the disease development process and to identify targets for drug treatment.;The approach was to generate a quantum dot (QD)-modified, protease-specific protein module that can be used as a Fluorescence Resonance Energy Transfer (FRET) based nanoprobe for probing protease activity. The site-specific incorporation of an acceptor fluorescent dye was accomplished using the thiol group of cysteine. While conjugation to QDs was facilitated by the presence of a hexa-histidine tag, due to its affinity for the Zn shell of QDs. Presence of an elastin domain within the module enabled the simple purification of the QD-modified FRET substrate. The modular nature of the design allowed easy alteration of the recognition sequence without significantly modifying other domains. Moreover, the FRET efficiency within the nanoassemblies was easily controlled by changing the QD-peptide dye ratios. The flexibility of the approach was demonstrated by generating nanoprobes for rapid and sensitive detection of the cancer-specific matrix metalloprotease (MMP-7) and the West Nile virus protease (NS3). Intracellular delivery of the substrates was facilitated by the use of a flanking TAT peptide. The effectiveness of the FRET substrate was investigated by monitoring the whole-cell fluorescence ratio between the QD and the acceptor fluorescence dye when introduced into a HeLa cell line. The utility of the assay system was validated for the HTS of HIV protease inhibitors.;This modular QD based FRET assay provides a future platform useful for general HTS of a wide range of protease activities relating to viral infection, blood coagulation, fibrinolysis, hormone maturation, and apoptosis. The ease of using this genetic approach also significantly reduced the cost associated with peptide synthesis. This could ultimately result in a low-cost screening drug platform for a wide range of protease targets important for human health.;The integration of the development of tunable biomolecules with FRET-based HTS screening represents a unique effort that expands the fundamental development of protein engineering with the implementation of drug discovery. Through this research an integrated perspective of the important interfaces and synergies connecting biochemistry, modern genetics, and HTS was gained.
机译:药物发现中最关键的方面之一是生物活性筛选测定法,通过它可以鉴定出最有效抑制靶标的化合物。在过去的十年中,抗病毒市场经历了巨大的增长,随着新的病毒靶标的发现,抗病毒市场有望进一步发展。持续存在的病毒抗药性问题需要开发新一代药物来替代现有药物。由于有希望的候选药物未能通过对人类的效力和安全性的考验,制药行业面临着巨大的成本。对成功的抗病毒药物的追求进一步受到阻碍,因为成功的药物必须经常进入受感染的细胞并中和复制的病毒而不会对宿主细胞造成伤害。为了应对这些挑战,筛选试验应代表体内环境,以便可以从临床功效的角度以足够的可信度解释结果。为此,基于细胞的高通量筛选(HTS)分析是优选的,因为它们可以提供有关药物的不良作用和向靶细胞的转运效率的其他信息。;本论文的总体目标是开发一种遗传方法可编程模块,可轻松适用于筛选多种蛋白酶的抑制剂。蛋白酶是蛋白水解酶,其催化肽键的裂解。它们在许多重要的细胞内和细胞外过程中发挥重要作用,例如病毒感染,血液凝结,癌变,纤维蛋白溶解,激素成熟和细胞凋亡。这些特性使蛋白酶成为详细研究的主要目标,以便更好地了解疾病的发展过程并确定药物治疗的靶标。该方法是生成量子点(QD)修饰的蛋白酶特异性蛋白质模块,该模块可以用作基于荧光共振能量转移(FRET)的纳米探针,用于探测蛋白酶活性。使用半胱氨酸的巯基完成受体荧光染料的位点特异性结合。六组氨酸标签的存在促进了与QD的缀合,因为它对QD的Zn壳具有亲和力。模块中弹性蛋白结构域的存在使得能够简单纯化QD修饰的FRET底物。设计的模块化性质允许在不显着修改其他域的情况下轻松更改识别顺序。此外,通过改变QD-肽染料比例,可以轻松控制纳米组件中的FRET效率。通过生成用于快速,灵敏地检测癌症特异性基质金属蛋白酶(MMP-7)和西尼罗河病毒蛋白酶(NS3)的纳米探针,证明了该方法的灵活性。通过使用侧翼的TAT肽促进底物的细胞内递送。通过监测QD和受体荧光染料引入HeLa细胞系时的全细胞荧光比率,研究了FRET底物的有效性。该检测系统的实用性已针对HIV蛋白酶抑制剂的HTS进行了验证。;这种基于QD的模块化FRET检测为未来的平台提供了有用的平台,可用于与病毒感染,血液凝固,纤维蛋白溶解,激素成熟相关的多种蛋白酶活性的常规HTS和凋亡。使用这种遗传方法的简便性也大大降低了与肽合成相关的成本。这最终可能会导致低成本的筛选药物平台,可用于对人类健康重要的各种蛋白酶靶标。可调节生物分子的开发与基于FRET的HTS筛选的整合代表了一项独特的努力,可扩展蛋白质的基本开发工程与药物发现的实施。通过这项研究,获得了连接生物化学,现代遗传学和HTS的重要界面和协同作用的综合视角。

著录项

  • 作者

    Biswas, Payal.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Biology Molecular.;Biology Cell.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号