首页> 外文学位 >Passive and Non-mechanical Pumping in Microfluidic Devices.
【24h】

Passive and Non-mechanical Pumping in Microfluidic Devices.

机译:微流体设备中的被动和非机械泵送。

获取原文
获取原文并翻译 | 示例

摘要

Last couple of decades have witnessed massive upsurge in efforts of transporting and manipulating solutes and moieties in microfluidic devices, motivated by their wide applications in disciplines ranging from astrophysics to nanomedicine. Pressure-driven transport scales as the square of the channel height, and therefore demands massive pumping power for microchannels making it unusable in several microfluidic applications. Accordingly, there have been a plethora of endeavors to devise novel non-mechanical fluid driving techniques in microchannels, e.g., transport by applying electrostatic, magnetic, or acoustic forces. However, these mechanisms, often necessitate special fluid properties, as well as cumbersome fabrication requirements. Hence, there has been a tremendous drive to develop passive pumping mechanisms, that successfully exploit the inherent geometric and physical characteristics of the microchannel and the fluid, yet are free from the above constraints.;In this thesis, several aspects of one of the foremost microfluidic passive pumping mechanisms, namely capillary-driven transport, has been analyzed. Firstly, the effect of a transient velocity profile on a classical capillary filling problem has been investigated. All the existing analyses invariably consider a fully-developed velocity profile—accordingly, the proposed model could reveal several yet unaddressed non-trivial mechanisms inherent in a capillary filling problem, intrinsic to the consideration of a more generalized situation of a developing velocity profile.;Secondly, an appropriate analytical model has been developed to describe the pressure-field at the entrance of the capillary. This pressure-field improves on the existing expressions in the sense that it is applicable to capillaries of all possible aspect ratios, and manifest its influence by predicting a capillary filling length that is different from that hypothesized by the existing models.;Thirdly, important correlations interrelating the wetting and other physical properties of popular biomicrofluidic solvents such as BSA (Bovine Serum Albumin) solution or microbead suspension have been derived from thoroughly performed experimental studies. These correlations are next employed to study the capillary dynamics of these two liquid as a functions of its physical properties.;Finally, effects of additional body forces, such as gravity or electrostatics, in affecting a capillary transport have been investigated.
机译:在过去的几十年中,由于其在天体物理学到纳米医学等领域的广泛应用,促使微流体装置中的溶质和部分的传输和操纵工作大量增加。压力驱动的传输与通道高度的平方成比例,因此要求微通道具有巨大的泵送功率,因此无法在多种微流体应用中使用。因此,已经进行了许多努力来设计微通道中的新颖的非机械流体驱动技术,例如通过施加静电力,磁力或声力进行运输。然而,这些机制通常需要特殊的流体性质以及繁琐的制造要求。因此,人们一直在大力发展无源泵送机制,该机制成功地利用了微通道和流体的固有几何和物理特性,但又不受上述约束的限制。分析了微流体被动泵送机理,即毛细管驱动的输送。首先,研究了瞬时速度分布对经典毛细管填充问题的影响。所有现有的分析都始终考虑完全发展的速度曲线,因此,所提出的模型可能会揭示毛细管填充问题中固有的几种尚未解决的非平凡机制,这是考虑到更普遍的发展速度曲线情况所固有的。其次,已经开发了一种适当的分析模型来描述毛细管入口处的压力场。在适用于所有可能长宽比的毛细管的意义上,此压力场对现有表达式进行了改进,并通过预测与现有模型所假定的毛细管填充长度不同的毛细管填充长度来显示其影响。第三,重要的相关性彻底进行的实验研究得出了与流行的生物微流体溶剂(例如BSA(牛血清白蛋白)溶液或微珠悬浮液)的润湿性和其他物理特性之间的相互关系。接下来,利用这些相关性来研究这两种液体的毛细管动力学,作为其物理性质的函数。最后,研究了附加的体力(例如重力或静电)对毛细管传输的影响。

著录项

  • 作者单位

    University of Alberta (Canada).;

  • 授予单位 University of Alberta (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 老年病学;
  • 关键词

  • 入库时间 2022-08-17 11:42:31

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号