首页> 外文学位 >Engineering hyaluronic acid hydrogel degradation to control cellular interactions and adult stem cell fate in 3D.
【24h】

Engineering hyaluronic acid hydrogel degradation to control cellular interactions and adult stem cell fate in 3D.

机译:工程化透明质酸水凝胶降解,以控制3D中的细胞相互作用和成体干细胞命运。

获取原文
获取原文并翻译 | 示例

摘要

The design and implementation of extracellular matrix (ECM)-mimetic hydrogels for tissue engineering (TE) applications requires an intensive understanding of cell-material interactions, including matrix remodeling and stem cell differentiation. However, the influence of microenvironmental cues, e.g., matrix biodegradability, on cell behavior in vitro has not been well studied in the case of direct cell encapsulation within 3-dimensional (3D) hydrogels. To address these issues, a facile sequential crosslinking technique was developed that provides spatial and temporal control of 3D hydrogel degradability to investigate the importance of material design on cell behavior. Specifically, hydrogels were synthesized from hyaluronic acid (HA) macromers in a sequential process: (1) a primary Michael-type addition crosslinking using cell adhesive and matrix metalloprotease (MMP)-degradable oligopeptides to consume a portion of total reactive groups and resulting in "-UV" hydrogels permissive to cell-mediated degradation, followed by (2) a secondary, light initiated free-radical crosslinking to consume remaining reactive groups and "switch" the network to a non-degradable structure ("+UV") via the addition of non-degradable kinetic chains.;Using this approach, we demonstrated control of encapsulated hMSC spreading by varying the crosslink type (i.e., the relative hydrogel biodegradability), including with spatial control. Upon incubation with bipotential soluble differentiation factors, these same degradation-mediated spreading cues resulted in an hMSC differentiation fate switch within -UV versus +UV environments. Follow-up studies demonstrated that degradation-mediated traction generation, rather than matrix mechanics or cell morphology, is the critical biophysical signal determining hMSC fate. Sequentially crosslinked HA hydrogels were also studied for the capacity to support remodeling by in vivo and ex vivo tissues, including with spatial control, toward tissue engineering (e.g., neovascularization) applications.;In total, the work presented here highlights sequential crosslinking as a versatile platform technology affording processing capabilities to better mimic dynamic features of native microenvironments, including spatial patterning and temporal alteration of hydrogel degradability, toward both basic studies of cell behavior and TE applications.
机译:用于组织工程(TE)应用的细胞外基质(ECM)模拟水凝胶的设计和实现需要对细胞-材料相互作用(包括基质重塑和干细胞分化)的深入了解。但是,在3维(3D)水凝胶中直接封装细胞的情况下,尚未很好地研究微环境提示(例如基质的生物降解性)对体外细胞行为的影响。为了解决这些问题,开发了一种简便的顺序交联技术,该技术提供了3D水凝胶可降解性的时空控制,以研究材料设计对细胞行为的重要性。具体而言,从透明质酸(HA)大分子单体按以下顺序合成水凝胶:(1)使用细胞粘合剂和基质金属蛋白酶(MMP)可降解的寡肽进行一级Michael型加成交联,以消耗一部分总反应基团并产生允许细胞介导降解的“ -UV”水凝胶,然后是(2)二次光引发的自由基交联,以消耗剩余的反应性基团,并通过以下途径将网络“切换”为不可降解的结构(“ + UV”)使用这种方法,我们证明了通过改变交联类型(即相对的水凝胶可生物降解性)来控制封装的hMSC的扩散,包括空间控制。与双能可溶性分化因子一起孵育后,这些相同的降解介导的扩散线索导致在-UV与+ UV环境中发生hMSC分化命运的转换。后续研究表明,降解介导的牵引力产生(而不是基质力学或细胞形态)是决定hMSC命运的关键生物物理信号。还研究了顺序交联的HA水凝胶的支持能力,以支持体内离体组织的重构,包括在组织工程应用(例如,新血管形成)中进行空间控制。总体而言,此处介绍的工作着重介绍了顺序交联作为一种通用平台技术,该技术提供处理能力以更好地模拟天然微环境的动态特征,包括对空间行为和水凝胶降解性的时空改变,以进行细胞行为和TE应用的基础研究。

著录项

  • 作者

    Khetan, Sudhir.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Biology Cell.;Engineering Materials Science.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号