首页> 外文学位 >Time-domain orthogonal finite-element reduction-recovery (OrFE-RR) method for electromagnetics-based analysis of very large scale integrated circuit and package problems.
【24h】

Time-domain orthogonal finite-element reduction-recovery (OrFE-RR) method for electromagnetics-based analysis of very large scale integrated circuit and package problems.

机译:时域正交有限元缩减恢复(OrFE-RR)方法,用于基于电磁学的超大规模集成电路和封装问题的分析。

获取原文
获取原文并翻译 | 示例

摘要

The scaling of supply voltages and the increased level of integration have made the analysis and design of microelectronic systems increasingly challenging. To sustain the scaling and integration of digital, analog, mixed-signal and RF circuitry for years to come, an electromagnetic solution is indispensable to overcome the fundamental limits of a circuit-based analysis. There are two major challenges associated with electromagnetics-based analysis of integrated circuits and package problems. One is the exponentially increased problem size, which requires more than billions of unknowns to describe on-die and combined die-package problems accurately. The other is the multiscaled nature of the problem. A computer-aided design tool needs to span scale ranges of at least 10000:1 to analyze a combined die-package system.;In this work, we develop a time-domain orthogonal finite-element reduction-recovery method (OrFE-RR) to address the aforementioned challenges. In this method, a set of orthogonal prism vector basis functions is first constructed. A reduction-recovery algorithm is then developed to rigorously reduce an arbitrary 3-D multilayer circuit to a single-interface problem with negligible computational cost. The reduced single-interface problem features a diagonal system matrix, and hence can be readily solved. The solutions elsewhere are then recovered in linear complexity. The overall complexity in both storage and CPU time is linear. Moreover, an efficient parallelization scheme having linear speedup is developed to fully utilize the computational resources provided by many computer nodes as well as many cores on a single chip. In addition, we develop a fast model based simulation method to build an O(M) model, in linear time, to represent the original O(N) system, with M N. The overall computational cost of the OrFE-RR method is thus further reduced. Last but not least, a direct domain decomposition based solution of linear complexity is developed to tackle the challenge of simulating multiscaled structures present in on-chip integrated circuit and package problems.;Numerous numerical experiments, including real-world on-chip circuits and package problems provided by industry, have been conducted to demonstrate the accuracy, efficiency, capability and scalability of the algorithms developed in this work.
机译:电源电压的按比例缩放和集成度的提高使微电子系统的分析和设计变得越来越具有挑战性。为了在未来几年内保持数字,模拟,混合信号和RF电路的规模化和集成化,电磁解决方案必不可少,以克服基于电路的分析的基本限制。基于电磁的集成电路分析和封装问题有两个主要挑战。一种是成倍增加的问题规模,这需要数十亿个未知数才能准确描述芯片上和组合的芯片封装问题。另一个是问题的多尺度性质。计算机辅助设计工具需要跨越至少10000:1的比例范围才能分析组合的芯片封装系统。在这项工作中,我们开发了时域正交有限元缩减-恢复方法(OrFE-RR)应对上述挑战。在这种方法中,首先构造了一组正交棱镜矢量基函数。然后,开发了一种还原恢复算法,以可忽略的计算成本将任意的3-D多层电路严格还原为单接口问题。简化的单界面问题具有对角线系统矩阵,因此可以轻松解决。然后以线性复杂度恢复其他位置的解决方案。存储和CPU时间的总体复杂度是线性的。而且,开发了具有线性加速的有效并行化方案以充分利用由单个芯片上的许多计算机节点以及许多核提供的计算资源。此外,我们开发了一种基于模型的快速仿真方法,以线性时间构建一个O(M)模型,以表示原始的O(N)系统,其中M N。OrFE-RR方法的总体计算成本因此进一步减少。最后但并非最不重要的一点是,开发了一种基于线性复杂度的直接域分解解决方案,以解决模拟存在于芯片集成电路和封装问题中的多尺度结构的挑战。;大量的数值实验,包括实际的芯片上电路和封装已经进行了行业提供的问题来证明这项工作中开发的算法的准确性,效率,能力和可扩展性。

著录项

  • 作者

    Chen, Duo.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Electronics and Electrical.;Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号