首页> 外文学位 >Kinetic isotope and trace element partitioning during calcite precipitation from aqueous solution.
【24h】

Kinetic isotope and trace element partitioning during calcite precipitation from aqueous solution.

机译:方解石从水溶液中沉淀过程中的动力学同位素和微量元素分配。

获取原文
获取原文并翻译 | 示例

摘要

Precipitation of carbonate minerals is ubiquitous in the near-surface environment, and the isotopic and trace element composition of carbonates may be used to reconstruct the conditions of growth. Little is known about the mechanisms controlling isotope and trace element distribution into carbonates. Proposed growth mechanisms are typically inferred from the supersaturation dependence of CaCO3 precipitation rates. As different experimental techniques often generate different apparent reaction orders, numerous hypothesized mechanisms can be found in the literature. These descriptions of crystallization pathway cannot be used to identify processes controlling trace element and isotope partitioning.;Recent advances in experimental methodology allow us to observe microscopic to nanoscopic structures at the mineral surface during growth. The mechanisms controlling calcite growth have been directly determined by using fluid flow cells placed in an atomic force microscope (AFM; chapter 3). Calcite growth below the threshold oversaturation for amorphous calcium carbonate (ACC) formation---typical of seawater and most terrestrial fluids---occurs primarily through the attachment of ions to kink sites on the surface. The net flux of ions to kink sites governs both overall growth rate and mineral composition.;In this thesis, I present a self-consistent model based on observed calcite growth mechanisms that may be used to predict growth rate (chapter 1), and isotopic (chapter 2; Nielsen et al., 2012) and trace element (chapter 5; Nielsen et al., in prep.) partitioning as a function of solution composition. I apply this model to calcium isotope fractionation during the precipitation of synthetic calcite, which I grew and analyzed using novel secondary ion mass spectrometry (SIMS) methods (chapter 3). In chapter 4 (Nielsen and DePaolo, in review), I model calcium isotope fractionation in carbonate minerals that I collected from the highly alkaline Mono Lake, CA. The mechanistic framework developed here may be extended to multicomponent systems, and may be adapted for use in reactive transport models. When interpreted through the lens of this model, trace element and isotope signatures preserved in carbonates may eventually be used to reconstruct the chemistry of natural aqueous fluids.
机译:碳酸盐矿物的沉淀在近地表环境中无处不在,碳酸盐的同位素和微量元素组成可用于重建生长条件。关于控制同位素和微量元素向碳酸盐中分布的机理知之甚少。通常从CaCO3沉淀速率的过饱和依赖性中推断出拟议的生长机理。由于不同的实验技术通常会产生不同的表观反应顺序,因此在文献中可以找到许多假设的机制。这些结晶途径的描述不能用于识别控制微量元素和同位素分配的过程。实验方法的最新进展使我们能够在生长过程中观察矿物表面的微观至纳米结构。通过使用置于原子力显微镜(AFM;第3章)中的流体池直接确定了控制方解石生长的机制。方解石的生长低于无定形碳酸钙(ACC)形成的阈值过饱和度(通常是海水和大多数陆地流体),主要是通过将离子附着到表面的扭结部位而发生的。离子到扭结位点的净通量控制着总的生长速率和矿物成分。在本文中,我基于观察到的方解石生长机理提出了一个自洽模型,该模型可用于预测生长速率(第1章)和同位素(第2章; Nielsen等人,2012)和微量元素(第5章; Nielsen等人,准备)根据溶液组成进行分配。我将此模型应用于合成方解石沉淀过程中的钙同位素分馏,并使用新型二次离子质谱(SIMS)方法对其进行了生长和分析(第3章)。在第4章(Nielsen和DePaolo,正在回顾中)中,我对从加利福尼亚州莫诺湖的高碱性碳酸盐矿物中钙同位素分馏进行了建模。此处开发的机械框架可以扩展到多组件系统,并且可以适用于反应性运输模型。当通过该模型的透镜来解释时,碳酸盐中保留的痕量元素和同位素特征最终可能会被用于重建天然含水流体的化学性质。

著录项

  • 作者

    Nielsen, Laura Christina.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Geology.;Geochemistry.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号