首页> 外文学位 >Plasma surface interactions at interlayer dielectric (ILD) and metal surfaces.
【24h】

Plasma surface interactions at interlayer dielectric (ILD) and metal surfaces.

机译:层间电介质(ILD)和金属表面的等离子体表面相互作用。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, remote plasma interactions with the surfaces of low-k interlayer dielectric (ILD), Cu and Cu adhesion layers are investigated. The first part of the study focuses on the simultaneous plasma treatment of ILD and chemical mechanical polishing (CMP) Cu surfaces using N2/H 2 plasma processes. H atoms and radicals in the plasma react with the carbon groups leading to carbon removal for the ILD films. Results indicate that an N2 plasma forms an amide-like layer on the surface which apparently leads to reduced carbon abstraction from an H2 plasma process. In addition, FTIR spectra indicate the formation of hydroxyl (Si-OH) groups following the plasma exposure. Increased temperature (380 °C) processing leads to a reduction of the hydroxyl group formation compared to ambient temperature processes, resulting in reduced changes of the dielectric constant. For CMP Cu surfaces, the carbonate contamination was removed by an H2 plasma process at elevated temperature while the C-C and C-H contamination was removed by an N2 plasma process at elevated temperature. The second part of this study examined oxide stability and cleaning of Ru surfaces as well as consequent Cu film thermal stability with the Ru layers. The ∼2 monolayer native Ru oxide was reduced after H-plasma processing. The thermal stability or islanding of the Cu film on the Ru substrate was characterized by in-situ XPS. After plasma cleaning of the Ru adhesion layer, the deposited Cu exhibited full coverage. In contrast, for Cu deposition on the Ru native oxide substrate, Cu islanding was detected and was described in terms of grain boundary grooving and surface and interface energies. The thermal stability of 7 nm Ti, Pt and Ru interfacial adhesion layers between a Cu film (10 nm) and a Ta barrier layer (4 nm) have been investigated in the third part. The barrier properties and interfacial stability have been evaluated by Rutherford backscattering spectrometry (RBS). Atomic force microscopy (AFM) was used to measure the surfaces before and after annealing, and all the surfaces are relatively smooth excluding islanding or de-wetting phenomena as a cause of the instability. The RBS showed no discernible diffusion across the adhesion layer/Ta and Ta/Si interfaces which provides a stable underlying layer. For a Ti interfacial layer RBS indicates that during 400 °C annealing Ti interdiffuses through the Cu film and accumulates at the surface. For the Pt/Cu system Pt interdiffuion is detected which is less evident than Ti. Among the three adhesion layer candidates, Ru shows negligible diffusion into the Cu film indicating thermal stability at 400 °C.
机译:本文研究了与低k层间电介质(ILD),Cu和Cu粘附层表面的远程等离子体相互作用。研究的第一部分集中于使用N2 / H 2等离子体工艺同时进行ILD等离子体处理和化学机械抛光(CMP)Cu表面。等离子体中的H原子和自由基与碳基反应,导致ILD膜的碳去除。结果表明,N2等离子体在表面上形成了类似酰胺的层,这显然导致了H2等离子体过程中碳的提取减少。另外,FTIR光谱表明在等离子体暴露之后羟基(Si-OH)的形成。与环境温度工艺相比,升高的温度(380°C)处理导致羟基形成的减少,从而导致介电常数的变化减少。对于CMP Cu表面,碳酸盐污染物通过高温下的H2等离子体工艺去除,而C-C和C-H污染物通过高温下的N2等离子体工艺去除。这项研究的第二部分研究了Ru氧化物的氧化物稳定性和Ru表面的清洁度以及随之而来的Ru膜对Cu膜的热稳定性。 H-等离子体处理后,约2个单层天然Ru氧化物被还原。通过原位XPS表征Ru基板上Cu膜的热稳定性或孤岛化。在等离子体清洁Ru粘附层之后,沉积的Cu表现出完全覆盖。相反,对于在Ru原生氧化物衬底上的Cu沉积,检测到Cu孤岛,并根据晶界开槽以及表面和界面能进行了描述。在第三部分中研究了7 nm的Ti,Pt和Ru界面粘合层在Cu膜(10 nm)和Ta阻挡层(4 nm)之间的热稳定性。阻挡层性能和界面稳定性已通过卢瑟福背散射光谱(RBS)进行了评估。原子力显微镜(AFM)用于测量退火前后的表面,并且所有表面都相对光滑,不包括由于不稳定性而引起的孤岛或去湿现象。 RBS显示在粘合层/ Ta和Ta / Si界面上没有明显的扩散,这提供了稳定的底层。对于Ti界面层,RBS表示在400°C退火期间,Ti扩散穿过Cu膜并累积在表面。对于Pt / Cu系统,检测到的Pt相互扩散不如Ti明显。在这三个候选粘附层中,Ru扩散到Cu膜中的扩散微不足道,表明在400°C时的热稳定性。

著录项

  • 作者

    Liu, Xin.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Physics General.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号