首页> 外文学位 >Using Emerging Methods to Investigate Stream and Groundwater Interaction at Multiple Spatial Scales.
【24h】

Using Emerging Methods to Investigate Stream and Groundwater Interaction at Multiple Spatial Scales.

机译:使用新兴方法研究多个空间尺度上的河流和地下水相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Fundamentally, streams represent physical conduits of water across gradients, yet a more holistic definition reveals stream corridors support a mosaic of living communities in a blend of surface and ground waters. The physical and biogeochemical patterns these dynamic systems support affect natural habitat and water quality, directly impacting the human experience. Our understanding of stream and groundwater interactions is at a time of rapid expansion due to an increase in environmental awareness, accountability, and emerging techniques which can be used to decipher underlying controls and develop predictive relationships. Water temperature has been used as a qualitative environmental tracer during the forging of this country from Lewis and Clarks pioneering spatial explorations to Thoreau's revolutionary scientific investigations; yet only very recent modeling and technological advancements have allowed us to apply these principles in a more distributed quantitative fashion. The resulting description of physical flow dynamics can be combined with innovative biogeochemical assessments to determine the fundamental linkages between inert and living processes along the stream corridor.;The magnitude and spatial distribution of groundwater inflows to streams is a known control on stream water quality. These inflows can be recognized and evaluated through a variety of methods, each with its own sensitivity and basic requirements. One such method is using the temperature differential between surface and groundwaters to both locate and quantify groundwater inputs. The emerging method of fiber-optic distributed temperature sensing (DTS) uses the temperature dependent backscatter of light along fiber-optic cables to determine temperature at high spatial and temporal resolution, essential creating continuous thermometers that may be applied to aquatic systems over a broad range of spatial scales. My initial investigations involved a quantitative comparison of heat tracing with DTS to existing methods of evaluating groundwater inflows (dye dilution gauging, differential gauging, and geochemical end-member mixing) along Nine Mile Creek in Syracuse, New York, USA. I found that DTS heat tracing generated comparable quantitative estimates of groundwater discharge to the stream, and provided the finest spatial characterization of these inflows of all methods tested.;The "hyporheic zone" describes where stream water temporarily enters the sub-surface, which is known to be biogeochemically reactive, before potentially mixing with shallow groundwaters and returning to the stream. This flux across the streambed interface has driven much recent research, but the intrinsic spatial and temporal variability have proven a challenge to define. I modified DTS optical fibers to improve spatial resolution from 1.0 to 0.014 meter so the propagation of diurnal temperature patterns into the steambed could be recorded and applied to one-dimensional conduction-advection-dispersion models to determine the vertical component of hyporheic flux. I installed these custom high-resolution fiber-optic temperature sensors within the streambed above two beaver dams in Lander, Wyoming, USA for five weeks as stream discharge dropped by 45%. The resulting rich datasets revealed flux was organized by streambed morphology with strong, deep flux at glides and near-dam bars, and weak, shallow flux at pools and bars set farther upstream. Additionally, these morphologic units showed contrasting temporal trends in flux penetration and magnitude.;One benefit of such refined descriptions of the physical hyporheic system is that they can be directly compared to ambient biogeochemical data collected in coincident vertical profiles to evaluate the physical controls on streambed chemistry and nutrient cycling. I collected pore water at multiple depths, once a week, and analyzed these samples for several conservative and redox-sensitive solutes. The results revealed strong correlation between vertical flux magnitude and the degree to which hyporheic water was "oxic-stream-like" or "anoxic-reduced". Residence time along hyporheic flowpaths was found to be a dominant control on redox condition, a relationship that held for both spatial and temporal flux patterns. This data set was augmented by an injection of the new biologically sensitive resazurin environmental tracer which showed that hyporheic flowpaths had much greater rates of aerobic reactivity compared to the net streamflow, but this signal was indistinguishable at the reach scale.;The cumulative result of the past three years of stream research using emerging ideas and methods is an improved understanding of these intricate and fascinating biomes. I hope this knowledge will serve to improve the management of, and appreciation for, the veins of our shared landscape.
机译:从根本上说,溪流代表了跨越梯度的水的物理管道,但更全面的定义表明,溪流走廊在地表水和地下水的混合中支撑着生物群落的镶嵌。这些动态系统支持的物理和生物地球化学模式影响自然栖息地和水质,直接影响人类体验。我们对河流与地下水相互作用的理解是在快速扩展之际,这是由于环境意识,问责制和新兴技术(可用于解密基本控制并建立预测关系)的增加。从路易斯和克拉克斯开创性的空间探索到梭罗革命性的科学探索,在这个国家的锻造过程中,水温一直被用作定性的环境示踪剂。但是,只有最近的建模和技术进步才使我们能够以更加分散的定量方式应用这些原理。所得的物理流动动力学描述可以与创新的生物地球化学评估相结合,以确定沿河道走廊的惰性过程和生命过程之间的基本联系。流入河道的地下水的数量和空间分布是对河道水质的已知控制。可以通过多种方法来识别和评估这些流入,每种方法都有其自身的敏感性和基本要求。一种这样的方法是利用地表水和地下水之间的温差来定位和量化地下水输入。新兴的光纤分布式温度感测(DTS)方法使用光在光缆上的温度相关的反向散射来确定高空间和时间分辨率下的温度,这必不可少,从而创造了可用于广泛范围内水生系统的连续温度计空间尺度。我最初的研究涉及将DTS伴热与评估美国纽约锡拉丘兹市Nine Mile Creek地下水流入量(染料稀释法,差分法和地球化学末端成员混合)的现有方法进行定量比较。我发现DTS的热量追踪生成了可比较定量的地下水向河流排放量的估算,并提供了所有测试方法的这些流入量的最佳空间特征。“疏水区”描述了河流水暂时进入地下的位置,即已知具有生物地球化学反应性,然后可能与浅层地下水混合并返回溪流。跨流床界面的这种通量推动了许多最新研究,但事实证明固有的时空变异性很难定义。我对DTS光纤进行了改进,以将空间分辨率从1.0米提高到0.014米,因此可以记录昼夜温度模式向蒸汽床中的传播,并将其应用于一维传导对流扩散模型,以确定水流的垂直分量。我将这些定制的高分辨率光纤温度传感器安装在美国怀俄明州兰德市的两个海狸水坝上方的河床中,历时五周,河水流量下降了45%。生成的丰富数据集揭示了通量是由流态形态组成的,其中滑行和近坝坝处的通量强,深,而上游的水池和坝柱的通量弱而浅。此外,这些形态单位在通量渗透率和强度方面表现出相反的时间趋势。物理低渗系统的这种精细描述的一个好处是,可以将它们直接与以一致的垂直剖面收集的周围生物地球化学数据进行比较,以评估流化床上的物理控制化学和营养循环。我每周一次在多个深度收集孔隙水,并分析这些样品中的几种保守和氧化还原敏感的溶质。结果表明,垂直通量大小与低渗水呈“类似氧气流”或“减少缺氧”的程度密切相关。发现沿流变流动路径的停留时间是氧化还原条件的主要控制因素,该关系对于空间和时间通量模式均成立。通过注入新的对生物敏感的刃天青素环境示踪剂可以增强该数据集,该示踪剂表明,与净流相比,流变流径的有氧反应速率要高得多,但是在到达范围内该信号是无法区分的。在过去的三年中,使用新兴思想和方法进行的流研究使人们对这些错综复杂的生物群落有了更好的理解。我希望这些知识将有助于改善对我们共同景观脉络的管理和欣赏。

著录项

  • 作者

    Briggs, Martin Ashley.;

  • 作者单位

    Syracuse University.;

  • 授予单位 Syracuse University.;
  • 学科 Hydrology.;Biogeochemistry.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号