首页> 外文学位 >A Single Neuron Model to Study the Mechanisms and Functions of Dendritic Development.
【24h】

A Single Neuron Model to Study the Mechanisms and Functions of Dendritic Development.

机译:研究树突发育机制和功能的单神经元模型。

获取原文
获取原文并翻译 | 示例

摘要

Dendrites are the structures of a neuron specialized to receive input signals and to provide the substrate for the formation of synaptic contacts with other cells. The goal of this work is to study the activity-dependent mechanisms underlying dendritic growth in a single-cell model. For this, the individually identifiable adult motoneuron, MN5, in Drosophila melanogaster was used. This dissertation presents the following results. First, the natural variability of morphological parameters of the MN5 dendritic tree in control flies is not larger than 15%, making MN5 a suitable model for quantitative morphological analysis. Second, three-dimensional topological analyses reveals that different parts of the MN5 dendritic tree innervate spatially separated areas (termed "isoneuronal tiling"). Third, genetic manipulation of the MN5 excitability reveals that both increased and decreased activity lead to dendritic overgrowth; whereas decreased excitability promoted branch elongation, increased excitability enhanced dendritic branching. Next, testing the activity-regulated transcription factor AP-1 for its role in MN5 dendritic development reveals that neural activity enhanced AP-1 transcriptional activity, and that AP-1 expression lead to opposite dendrite fates depending on its expression timing during development. Whereas overexpression of AP-1 at early stages results in loss of dendrites, AP-1 overexpression after the expression of acetylcholine receptors and the formation of all primary dendrites in MN5 causes overgrowth. Fourth, MN5 has been used to examine dendritic development resulting from the expression of the human gene MeCP2, a transcriptional regulator involved in the neurodevelopmental disease Rett syndrome. Targeted expression of full-length human MeCP2 in MN5 causes impaired dendritic growth, showing for the first time the cellular consequences of MeCP2 expression in Drosophila neurons. This dendritic phenotype requires the methyl-binding domain of MeCP2 and the chromatin remodeling protein Osa. In summary, this work has fully established MN5 as a single-neuron model to study mechanisms underlying dendrite development, maintenance and degeneration, and to test the behavioral consequences resulting from dendritic growth misregulation. Furthermore, this thesis provides quantitative description of isoneuronal tiling of a central neuron, offers novel insight into activity- and AP-1 dependent developmental plasticity, and finally, it establishes Drosophila MN5 as a model to study some specific aspects of human diseases.
机译:树突是神经元的结构,专门用于接收输入信号并为与其他细胞形成突触接触提供底物。这项工作的目的是研究在单细胞模型中树突状生长的活动依赖机制。为此,使用了在果蝇中的可单独识别的成人运动神经元MN5。本文提出以下结果。首先,对照果蝇中MN5树突树的形态参数的自然变异性不大于15%,这使MN5成为进行定量形态分析的合适模型。第二,三维拓扑分析揭示了MN5树突树的不同部分支配了空间上分离的区域(称为“等时平铺”)。第三,对MN5兴奋性的基因操作表明,活性的增加和降低都会导致树突状生长。降低的兴奋性促进分支伸长,增加的兴奋性促进树突分支。接下来,测试活性调节转录因子AP-1在MN5树突发育中的作用表明,神经活性增强了AP-1转录活性,并且AP-1的表达取决于其在发育过程中的表达时机,导致相反的树突命运。早期阶段AP-1的过度表达会导致树突的丢失,而乙酰胆碱受体的表达和MN5中所有初级树突的形成后AP-1的过度表达会导致过度生长。第四,MN5已用于检查由人类基因MeCP2(一种参与神经发育疾病Rett综合征的转录调节因子)表达引起的树突发育。全长人类MeCP2在MN5中的靶向表达导致树突状生长受​​损,这首次显示了果蝇神经元中MeCP2表达的细胞后果。这种树突状表型需要MeCP2的甲基结合域和染色质重塑蛋白Osa。总而言之,这项工作已经完全建立了MN5作为单神经元模型,以研究树突发育,维持和变性的基础机制,并测试由树突生长失调导致的行为后果。此外,本论文定量描述了中枢神经元的神经元平铺,提供了对依赖活动和AP-1的发育可塑性的新颖见解,最后,它建立了果蝇MN5作为研究人类疾病某些特定方面的模型。

著录项

  • 作者

    Vonhoff, Fernando Jaime.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Biology Neuroscience.;Biology Genetics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号