首页> 外文学位 >Functional inference from molecular networks in systems biology.
【24h】

Functional inference from molecular networks in systems biology.

机译:从系统生物学中的分子网络进行功能推断。

获取原文
获取原文并翻译 | 示例

摘要

Biological entities like genes and proteins share complex relationships. Discerning how these cellular components work in cohesion to carry out various functions is a key challenge that many biologists face today. High throughput technologies now measure many aspects of cellular processes from whole genome sequences to dynamic quantities like mRNA quantities using gene chips, protein concentrations using protein chips as well as physical interactions among genes and proteins. Understanding the behavior of these interactions is not only the key to understanding diseases like cancer, but also has valuable applications in areas like metabolic engineering. Elucidation of the behavior of biological networks requires the development and application of various computational tools and techniques.;In this disseration we introduce a variety of techniques and computational tools that can be used to analyze biomolecular datasets, specifically, datasets of biomolecular interactions. The first part of this thesis focuses on the development of a "network-biology" framework to model and analyze static graphs comprised of genetic and protein interaction datasets. By employing machine learning approaches to genetic interaction prediction in Saccharomyces cerevisae, we were able to show that protein interaction networks can be a rich informative source for the prediction of genetic interactions. We also developed a novel graph-theoretic metric that can be used to identify bottlenecks in a network. Using the Saccharomyces cerevisae protein interaction network we were able to show that the new metric is positively correlated with the essentiality of a gene/protein. Our next theme focuses on the importance of the analysis of the dynamic properties of the biological networks to better understand their functionality. To this end we have developed a tool that is capable of locating bifurcation points where interesting qualitative behavior can be observed by optimizing the parameter values. Also identification of functional, physical modules can provide an effective and novel way of looking at biological systems. We therefore employed an insilico evolutionary approach to generate a library of network motifs which can be used to deleniate functional motifs in real world biochemical networks.
机译:基因和蛋白质等生物实体共享复杂的关系。当今,许多生物学家面临着一个关键的挑战,即如何辨别这些细胞成分如何协同工作以实现各种功能。现在,高通量技术可测量细胞过程的许多方面,从整个基因组序列到动态量,例如使用基因芯片的mRNA量,使用蛋白质芯片的蛋白质浓度以及基因和蛋白质之间的物理相互作用。了解这些相互作用的行为不仅是了解癌症等疾病的关键,而且在代谢工程等领域也具有重要的应用价值。为了阐明生物网络的行为,需要开发和应用各种计算工具和技术。在本论文中,我们介绍了可用于分析生物分子数据集的各种技术和计算工具,特别是生物分子相互作用的数据集。本文的第一部分着重于开发“网络生物学”框架,以建模和分析由遗传和蛋白质相互作用数据集组成的静态图。通过使用机器学习方法对酿酒酵母中的遗传相互作用进行预测,我们能够证明蛋白质相互作用网络可以作为预测遗传相互作用的丰富信息来源。我们还开发了一种新颖的图论度量标准,可用于识别网络中的瓶颈。使用酿酒酵母蛋白质相互作用网络,我们能够证明该新指标与基因/蛋白质的必要性正相关。我们的下一个主题重点是分析生物网络动态特性以更好地了解其功能的重要性。为此,我们开发了一种工具,该工具能够定位分叉点,通过优化参数值可以观察到有趣的定性行为。功能,物理模块的识别也可以提供一种有效且新颖的方法来查看生物系统。因此,我们采用了计算机进化方法来生成网络基序库,该库可用于删除现实世界中生化网络中的功能基序。

著录项

  • 作者

    Paladugu, Sri R.;

  • 作者单位

    The Claremont Graduate University.;

  • 授予单位 The Claremont Graduate University.;
  • 学科 Applied Mathematics.;Biology Bioinformatics.;Biology Systematic.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号