首页> 外文学位 >Ultrafast optical studies of electronic dynamics in semiconductors.
【24h】

Ultrafast optical studies of electronic dynamics in semiconductors.

机译:半导体中电子动力学的超快速光学研究。

获取原文
获取原文并翻译 | 示例

摘要

The dynamics of charge carriers in semiconductors are of fundamental importance for semiconductor applications. This includes studies of energy relaxation, carrier recombination, and carrier transport (both diffusive and ballistic). Due to their limited temporal resolution, electron measurement techniques cannot be used to study these processes on time scales in which the carrier-lattice system is not in equilibrium. However, in contemporary semiconductor devices with nanometer dimensions, this is the regime that is of interest. In this dissertation, ultrafast optical experimental techniques and results from various semiconductors are presented, which provide information about nonequilibrium electronic dynamics. First, a time resolved pump-probe technique is discussed, which can be used to measure carrier energy relaxation and carrier lifetime, and results are presented on reduced graphene oxide, Si/SiGe quantum wells, and single walled carbon nanotubes. Then, a spatially and temporally resolved pump-probe technique is discussed, which can be used to study carrier diffusion, and results are presented on GaAs, graphene, Si/SiGe quantum wells and single walled carbon nanotubes. Next, a quantum interference and control technique and a differential pump-probe technique that can be used to inject and detect ballistic currents are discussed along with results for the efficiency of such an injection technique and a demonstration of an AC spin polarized charge current in GaAs that was injected and detected using these techniques. Finally, a current-induced second harmonic generation technique that can be used to directly study currents is discussed, with results presented on both steady state and transient currents in GaAs.
机译:半导体中电荷载流子的动力学对于半导体应用至关重要。这包括能量弛豫,载流子复合和载流子传输(扩散和弹道)研究。由于其有限的时间分辨率,因此无法使用电子测量技术来研究在时间尺度上这些过程,在这些时间尺度上,载体-晶格系统不处于平衡状态。然而,在具有纳米尺寸的当代半导体器件中,这是令人关注的方案。本文介绍了超快光学实验技术和各种半导体的研究结果,这些技术提供了有关非平衡电子动力学的信息。首先,讨论了一种时间分辨的泵浦探针技术,该技术可用于测量载流子能量弛豫和载流子寿命,并在还原的氧化石墨烯,Si / SiGe量子阱和单壁碳纳米管上给出了结果。然后,讨论了一种时空分辨的泵浦探测技术,该技术可用于研究载流子扩散,并在GaAs,石墨烯,Si / SiGe量子阱和单壁碳纳米管上给出了结果。接下来,讨论了可用于注入和检测弹道电流的量子干扰和控制技术以及差分泵浦探针技术,以及这种注入技术的效率结果以及GaAs中交流自旋极化电荷电流的演示。使用这些技术进行注入和检测。最后,讨论了一种可用于直接研究电流的电流感应二次谐波产生技术,并给出了GaAs稳态和瞬态电流的结果。

著录项

  • 作者

    Ruzicka, Brian A.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Physics General.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号