首页> 外文学位 >Efficiency enhancement in dye-sensitized solar cells through light manipulation.
【24h】

Efficiency enhancement in dye-sensitized solar cells through light manipulation.

机译:通过光操纵提高染料敏化太阳能电池的效率。

获取原文
获取原文并翻译 | 示例

摘要

Solar energy conversion is dominated by expensive solid-state photovoltaic cells. As low-cost cells continue to develop, the dye sensitized solar cell has generated considerable interest as an efficient alternative. Although already moderately efficient, this cell offers numerous areas for improvement, both electronically and optically. Solar conversion efficiencies have been studied by modifying optical pathways through these dye-sensitized solar cells, or Gratzel cells. Monochromatic incident-to-photon current efficiency (IPCE) data reveals that an inverse opal photonic crystal or other disordered layer coupled to a nanocrystalline TiO2 layer enhances photocurrent efficiency by illumination from the counter electrode direction. Modifying the cell architecture to allow for illumination through the working electrode yields similar increased enhancements by proper selection of the photonic bandgap. Direct growth of TiO2 inverse opals on a nanocrystalline slab was accomplished by polymer infiltration of the slab, followed by crystal growth and liquid phase deposition. Results demonstrate that the bilayer architecture contributes to the enhanced light harvesting rather than the inverse opal layer and is due, in part, to strong light localization, Bragg diffraction and enhanced scattering. These effects occur solely at the bilayer interface and largely contribute to the photocurrent enhancements in the 540--750 nm region where the sensitizer dye is a poor absorber. TiO2 sculptured thin films were also studied and offer promise for the development of efficient solid-state dye cells.; Visible light undergoes effective solar energy conversion by the typical dye-sensitized solar cells, but is detrimental to silicon solar cells. In contrast, near-infrared light is not utilized by these dye cells, but results in high efficiencies for silicon. Spectrum-splitting tandem cell architectures consisting of a Gratzel cell and a silicon photovoltaic module have been designed and tested. Spectral ranges were separated by reflecting near-infrared light using a hot-mirror coating on the Gratzel cell. A cell module was fabricating using 12 individual Gratzel cells and a single silicon concentrator and tested under solar conditions, yielding proof-of-principle data for the development of future modules.; Colloidal crystals are large-scale analogs of inorganic crystals, and their synthesis has been developed into an educational lab for high school and undergraduate students. Colloidal crystals are self-assembled onto glass substrates, followed by polymer templating. This lab effectively introduces majors and non-majors alike to a unique area of materials synthesis with a modular approach towards synthesis, instrumentation, and characterization. The adaptability of this lab to various skill levels as well as opportunities for cooperative based learning makes this lab an excellent curricular addition.
机译:太阳能转换主要由昂贵的固态光伏电池组成。随着低成本电池的不断发展,染料敏化太阳能电池作为一种有效的替代品已引起了广泛的关注。尽管该电池已经具有中等效率,但它在电子和光学方面都提供了许多需要改进的地方。通过修改通过这些染料敏化太阳能电池或Gratzel电池的光路,已经研究了太阳能转换效率。单色入射到光子的电流效率(IPCE)数据表明,与纳米晶体TiO2层耦合的蛋白石反光子晶体或其他无序层可通过从反电极方向进行照明来提高光电流效率。通过适当选择光子带隙,修改单元的结构以允许通过工作电极进行照明会产生类似的增强效果。 TiO2反蛋白石在纳米晶板上的直接生长是通过聚合物对板的渗透,然后进行晶体生长和液相沉积来实现的。结果表明,双层体系结构有助于增强光的采集而不是反蛋白石层,并且部分原因是由于强光定位,布拉格衍射和增强的散射。这些效应仅在双层界面处发生,并在增感剂染料吸收不良的540--750 nm区域极大地促进了光电流的增强。还研究了TiO2雕刻的薄膜,这为开发高效固态染料电池提供了希望。可见光通过典型的染料敏化太阳能电池进行有效的太阳能转换,但对硅太阳能电池有害。相反,这些染料电池没有利用近红外光,但是导致了硅的高效率。已经设计和测试了由Gratzel电池和硅光伏模块组成的频谱分离串联电池结构。使用Gratzel电池上的热镜涂层通过反射近红外光来分离光谱范围。使用12个单独的Gratzel电池和一个硅集中器制造一个电池模块,并在太阳能条件下进行了测试,从而为以后的模块开发提供了原理证明数据。胶体晶体是无机晶体的大规模类似物,其合成已发展成为高中生和本科生的教育实验室。胶体晶体自组装到玻璃基板上,然后进行聚合物模板化。该实验室通过模块化的合成,仪器和表征方法,有效地将专业和非专业的专业介绍给材料合成的独特领域。该实验室对各种技能水平的适应性以及基于合作学习的机会,使该实验室成为极好的课程补充。

著录项

  • 作者

    Abrams, Neal M.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号