首页> 外文学位 >Micropatterning neuronal networks on nanofiber platforms
【24h】

Micropatterning neuronal networks on nanofiber platforms

机译:纳米纤维平台上的微模式神经网络

获取原文
获取原文并翻译 | 示例

摘要

Neuronal networks are groups of interconnected cells in the Central Nervous System (CNS) or the Peripheral Nervous System (PNS) that function in many different ways. They can provide function in the sympathetic nervous system, in a sensory circuit in the spinal column, or can be a high level processing unit in a cortex. If neuronal networks lose their ability to perform their function, this can ultimately lead to a neurological disorder in the body. Therefore it is important to conduct research on neuronal networks to better understand the underlying mechanisms of neurological disorders. Even though there has been a considerable amount of useful research conducted on neuronal networks, the connections in those neuronal networks are random. There are massive amounts of connections in a mammalian brain, so the ability to guide the connections for studying neural networks is of vital importance. In order to better understand how the brain stores and processes information, the complexity associated with neuronal networks has to be reduced. Cell patterning is a potential solution to this problem and allows simplified and organized neuronal networks. In this thesis cell patterning using microfabrication techniques is discussed and a microfabricated device that was patterned on biocompatible extracellular matrix (ECM)-like polymer electrospun nanofibers is introduced. Our device was able to pattern, organize, and simplify neuronal networks. We hypothesized that physical confinement of neural cells and limited routes of neurite extension would contribute to reduced proliferation, increased differentiation, and therefore enable the formation of more robust neural networks. The effect of cell confinement as well as the use of vacuum seeding on neural network formation was compared to cell growth on collagen-coated tissue culture polystyrene and nanofiber mats with no confining microstructures. To test the effects of the underlying nanofibers on the neural network formation, we fabricated our device on both random and aligned nanofibers. We evaluated performance of our device from a neural tissue engineering perspective. Finally, the results of various biological responses, i.e. adhesion, viability, and differentiation, of cells on our devices on random and aligned nanofibers are discussed.
机译:神经网络是中枢神经系统(CNS)或周围神经系统(PNS)中相互连接的细胞组,它们以许多不同的方式起作用。它们可以在交感神经系统中,在脊柱的感觉回路中提供功能,或者可以是皮质中的高级处理单元。如果神经元网络失去执行其功能的能力,则最终可能导致体内神经系统疾病。因此,重要的是对神经网络进行研究,以更好地了解神经系统疾病的潜在机制。即使在神经元网络上进行了大量有用的研究,但这些神经元网络中的连接是随机的。哺乳动物大脑中存在大量的连接,因此引导连接以研究神经网络的能力至关重要。为了更好地了解大脑如何存储和处理信息,必须降低与神经元网络相关的复杂性。细胞图案化是解决这个问题的一种潜在方法,它可以简化和组织神经网络。在本文中,讨论了使用微细加工技术对细胞进行构图的方法,并介绍了一种在生物相容性细胞外基质(ECM)状聚合物电纺纳米纤维上构图的微细加工设备。我们的设备能够模式化,组织和简化神经网络。我们假设神经细胞的物理限制和有限的神经突延伸途径将有助于减少增殖,增加分​​化,因此能够形成更强大的神经网络。将细胞限制以及使用真空接种对神经网络形成的影响与胶原蛋白涂覆的组织培养聚苯乙烯和无限制微观结构的纳米纤维垫上的细胞生长进行了比较。为了测试基础纳米纤维对神经网络形成的影响,我们在随机和对齐的纳米纤维上制造了我们的设备。我们从神经组织工程学角度评估了设备的性能。最后,讨论了随机和对齐的纳米纤维上我们设备上细胞的各种生物学响应(即粘附,生存力和分化)的结果。

著录项

  • 作者

    Malkoc, Veysi.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Biomedical engineering.;Biochemistry.;Chemical engineering.;Electrical engineering.;Neurobiology.;Neurosciences.;Developmental biology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号