首页> 外文学位 >Envelope protection systems for piloted and unmanned rotorcraft.
【24h】

Envelope protection systems for piloted and unmanned rotorcraft.

机译:飞行员和无人旋翼机的保护系统。

获取原文
获取原文并翻译 | 示例

摘要

Performance and agility of rotorcraft can be improved using envelope protection systems (or carefree maneuvering systems), which allow the aircraft to use the full flight envelope without risk of exceeding structural or controllability limits. Implementation of such a system can be divided into two necessary parts: "Limit Prediction" which detects the impending violation of the limit parameter, and "Limit Avoidance" where a preventive action is taken in the form of pilot cueing or autonomous limiting. Depending upon the underlying flight control system, implementation of the envelope limiting system was categorized into two different structures: "Inceptor Constraint Architecture" and "Command Limiting Architecture".; The Inceptor Constraint Architecture is applicable to existing rotorcraft with conventional flight control system where control input proportionally affects control surfaces. The relationship between control input and limit parameter is complex which requires advanced algorithms for predicting impending limit violations. This research focuses on limits that exceed in transient response. A new algorithm was developed for predicting transient response using non-linear functions of measured aircraft states. The functions were generated off-line using simulation data from a non-real-time simulation, model to demonstrate the procedure for extracting them from flight test data.; Modern rotorcraft flight control systems are designed to accurately track certain aircraft states like roll and pitch attitudes which are either specified as command inputs in unmanned rotorcraft or mapped to control stick in piloted aircrafts. In the Command Limiting Architecture applicable to these systems, performance constraints were generated on the command input corresponding to the envelope limit. To simulate this flight control system, an adaptive model inversion controller was applied to a non-linear, blade element simulation model of a helicopter. The controller generated fully-coupled lateral, longitudinal, vertical and yaw axis control inputs using a single design point linear model. (Abstract shortened by UMI.)
机译:使用包络线保护系统(或无忧无虑的操纵系统)可以提高旋翼飞机的性能和敏捷性,使飞机能够使用整个飞行包络线而不会超过结构或可控制性极限。这种系统的实现可以分为两个必要的部分:“极限预测”,用于检测即将违反极限参数的情况;以及“极限避免”,其中以飞行员提示或自主极限的形式采取预防措施。根据基础飞行控制系统,包络线限制系统的实现分为两种不同的结构:“接收器约束架构”和“命令限制架构”。接受器约束架构适用于具有常规飞行控制系统的现有旋翼飞机,其中控制输入成比例地影响控制面。控制输入​​和极限参数之间的关系很复杂,这就需要先进的算法来预测即将到来的极限违反情况。这项研究的重点是超出瞬态响应的限值。开发了一种新算法,用于使用所测飞机状态的非线性函数预测瞬态响应。这些功能是使用非实时仿真模型中的仿真数据离线生成的,以演示从飞行测试数据中提取它们的过程。现代旋翼飞行器的飞行控制系统旨在精确地跟踪某些飞机状态,例如侧倾和俯仰姿态,这些状态既可以指定为无人旋翼飞机的命令输入,也可以映射到无人驾驶飞机的操纵杆。在适用于这些系统的命令限制体系结构中,在与包络限制相对应的命令输入上生成了性能限制。为了模拟该飞行控制系统,将自适应模型反演控制器应用于直升机的非线性叶片要素仿真模型。控制器使用单个设计点线性模型生成完全耦合的横向,纵向,垂直和偏航轴控制输入。 (摘要由UMI缩短。)

著录项

  • 作者

    Sahani, Nilesh A.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号