首页> 外文学位 >Enhanced optical detection of microparticles and bacterial cells in water using stationary acoustic wave fields.
【24h】

Enhanced optical detection of microparticles and bacterial cells in water using stationary acoustic wave fields.

机译:使用固定声波场增强了水中微粒和细菌细胞的光学检测。

获取原文
获取原文并翻译 | 示例

摘要

The overall goal of the research was to determine the feasibility of combining ultrasonic concentration and optical sensing technologies in the development of a sensitive water quality monitoring system to detect and enumerate micron-size particles, especially bacterial cells. The presence of micron-size particles and solutes in water deteriorate its quality, but the presence of contaminating microorganisms poses an extremely serious risk to the public. Water utilities expend the latest technology in water treatment to remove or reduce the levels of these contaminants. Currently, there are no inexpensive, easy-to-use instruments that have the sensitivity to detect and quantify microbial populations below 104 cells/ml of drinking water in real time. In this research, it was hypothesized that the detection limit would be improved by concentrating the contaminants via acoustic forces at the pressure nodes of a standing acoustic wave field. The contaminants were to be concentrated to a level within the detection limit of an optical system. An ultrasonic concentration chamber, where a planar standing acoustic wave field was used to concentrate contaminants, was developed for this study. Results showed that 8 mum diameter polymethylacrylate particles responded to the acoustic field within seconds and were retained at the nodes within one minute of sonication. The initial concentration of particles had the largest impact on the degree of concentration achieved---the lower the initial concentration, the greater the degree of concentration. Furthermore, results showed that the viability of Lactococcus lactis and Escherichia coli cells were not affected by transducer driving voltage, exposure time, microbial type, and pre-sonication cell concentration. A technique for designing a cylindrical piezoceramic tube for ultrasonic concentration was also developed in this study. Finally, empirical models for predicting cell concentrations using light scatter intensities and ratios of light scatter intensities were developed. Results showed that a relatively simple scattering measurement system may be coupled with the ultrasonic concentration chamber in the future development of a sensitive water quality monitoring system.
机译:该研究的总体目标是确定在开发灵敏的水质监测系统以检测和枚举微米级颗粒(尤其是细菌细胞)的过程中,将超声波浓缩和光学传感技术相结合的可行性。水中存在微米级的颗粒和溶质会降低其质量,但是污染微生物的存在对公众构成了极其严重的风险。自来水公司在水处理方面采用了最新技术,以去除或减少这些污染物的含量。当前,没有廉价,易于使用的仪器能够实时检测和定量低于104细胞/ ml饮用水的微生物种群。在这项研究中,假设通过在驻声波场的压力节点处通过声力将污染物集中来提高检测限。污染物应浓缩到光学系统检测极限以内的水平。为此研究开发了一个超声波浓缩室,其中使用了平面声波场来浓缩污染物。结果表明,直径为8毫米的聚丙烯酸甲酯颗粒可在数秒内响应声场,并在超声处理一分钟内保留在结点处。颗粒的初始浓度对达到的浓度程度影响最大-初始浓度越低,浓度越高。此外,结果表明,乳酸乳球菌和大肠杆菌细胞的活力不受换能器驱动电压,暴露时间,微生物类型和超声前细胞浓度的影响。在这项研究中,还开发了一种设计用于超声波浓缩的圆柱形压电陶瓷管的技术。最后,建立了使用光散射强度和光散射强度比预测细胞浓度的经验模型。结果表明,在将来开发敏感水质监测系统时,可以将相对简单的散射测量系统与超声浓缩室结合使用。

著录项

  • 作者

    Danao, Mary-Grace Cachuela.;

  • 作者单位

    University of Kentucky.;

  • 授予单位 University of Kentucky.;
  • 学科 Engineering Agricultural.; Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 农业工程;环境污染及其防治;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号